Advertisement

A novel fermentation pathway in anEscherichia coli mutant producing succinic acid, acetic acid, and ethanol

  • Mark I. Donnelly
  • Cynthia Sanville Millard
  • David P. Clark
  • Michael J. Chen
  • Jerome W. Rathke
Session 2: Applied Biological Research

Abstract

Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinic acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.

Index Entries

Escherichia coli fermentation succinic acid 

References

  1. 1.
    Gottschalk, G. (1985),Bacterial Metabolism, 2nd ed. Springer series in microbiology, Springer-Verlag, New York.Google Scholar
  2. 2.
    Clark, D. P. (1989),FEMS Microb. Rev. 63, 223–234.CrossRefGoogle Scholar
  3. 3.
    Bock, A. and Sawers, G. (1996), inEscherichia coli and Salmonella, Neidhardt, F. C., et al., eds. American Society for Microbiology, Washington, DC, pp. 262–282.Google Scholar
  4. 4.
    Samuelov, N. S., Lamed, R., Lowe, S., and Zeikus, J. G. (1991),Appl, Environ. Microbiol. 57, 3013–3019.Google Scholar
  5. 5.
    Guettler, M. V., Jain, M. K., and Rumler, D. (1996), in USPatent and Trademark Office, patent no. 5573931, Michigan Biotechnology Institute.Google Scholar
  6. 6.
    Millard, C. S., Chao, Y. -P., Liao, J. C., and Donnelly, M. I. (1996),Appl. Environ. Microbiol. 62, 1808–1810.Google Scholar
  7. 7.
    Stols, L. and Donnelly, M. I. (1997),Appl. Environ. Microbiol. 63, 2695–2701.Google Scholar
  8. 8.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989),Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  9. 9.
    Mat-Jan, F., Kiswar, A. Y., and Clark, D. P. (1989),J. Bacteriol. 171, 342–348.Google Scholar
  10. 10.
    Balch, W. and Wolfe, R. S. (1976),Appl. Environ. Microbiol. 32, 781–791.Google Scholar
  11. 11.
    Bunch, P. K., Mat-Jan, F., Lee, N., and Clark, D. P. (1997),Microbiology 143, 187–195.CrossRefGoogle Scholar
  12. 12.
    Boernke, W. E., Millard, C. S., Stevens, P. W., Kakar, S. N.; Stevens, F. J., and Donnelly, M. I. (1995),Arch. Biochem. Biophys. 322, 43–52.CrossRefGoogle Scholar
  13. 13.
    Gupta, S. and Clark, D. P. (1989),J. Bacteriol. 171, 3650–3655.Google Scholar
  14. 14.
    Postma, P. W., Lengeler, J. W., and Jacobsen, G. R. (1996), inEscherichia coli and Salmonella, Neidhardt, F. C., et al., eds. American Society for Microbiology, Washington, DC, pp. 1149–1174.Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Mark I. Donnelly
    • 1
  • Cynthia Sanville Millard
    • 1
  • David P. Clark
    • 3
  • Michael J. Chen
    • 2
  • Jerome W. Rathke
    • 2
  1. 1.Environmental Research DivisionArgonne
  2. 2.Chemical Technology DivisionArgonne National LaboratoryArgonne
  3. 3.Department of MicrobiologySouthern Illinois UniversityCarbondale

Personalised recommendations