Advertisement

Applied Scientific Research, Section B

, Volume 8, Issue 1, pp 349–356 | Cite as

A modification of cagniard’s method for solving seismic pulse problems

  • A. T. De Hoop
Article

Summary

A modification of Cagniard’s method for solving seismic pulse problems is given. In order to give a clear picture of our method, two simple problems are solved, viz. the determination of the scalar cylindrical wave generated by an impulsive line source and the scalar spherical wave generated by an impulsive point source.

Keywords

Line Source Scalar Wave Dimensional Wave Equation Seismic Scattering Scalar Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Cagniard, L., Réflexion et réfraction des ondes séismiques progressives, Gauthier-Villars, Paris 1939.Google Scholar
  2. 2).
    Dix, C. H., Geophysics19 (1954) 722.CrossRefADSGoogle Scholar
  3. 3).
    Hoop, A. T. de, The surface line source problem, Second Annual Report Seismic Scattering Project, Institute of Geophysics, University of California, Los Angeles, California, U.S.A., 1957.Google Scholar
  4. 4).
    Hoop, A. T. de, Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory, Thesis, Delft, Netherlands, 1958; Ch. IV.Google Scholar
  5. 5).
    Pekeris, C. L., Proc. Nat. Acad. Sci.41 (1955) 469.CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6).
    Pekeris, C. L., Proc, Nat. Acad. Sci.41 (1955) 629.CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. 7).
    Pekeris, C. L., Proc. Nat. Acad. Sci.42 (1956) 439.CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8).
    Pekeris, C. L. and Z. Alterman, J. Appl. Phys.28 (1957) 1317.CrossRefADSzbMATHGoogle Scholar
  9. 9).
    Pekeris, C. L. and H. Lifson, J. Acoust. Soc. Amer.29 (1957) 1233.CrossRefADSMathSciNetGoogle Scholar
  10. 10).
    Pekeris, C. L. and I. M. Longman, J. Acoust. Soc. Amer.30 (1958) 323.CrossRefADSMathSciNetGoogle Scholar
  11. 11).
    Whittaker, E. T. and G. N. Watson, A course of modern analysis, 4th ed., p. 115, Cambridge 1950.Google Scholar
  12. 12).
    Mane, A. —W., Z. angew. Math. Mech.34 (1954) 1.CrossRefMathSciNetGoogle Scholar
  13. 13).
    Miles, J. W., Homogeneous solutions in elastic wave propagation. Report GM-TR-0165-00350 of Space Technology Laboratories, Ramo-Wooldridge Corporation, Los Angeles, California, U.S.A., 1958; also Quart. Appl. Math.18 (1960) 37.Google Scholar

Copyright information

© Martinus Nijhoff 1960

Authors and Affiliations

  • A. T. De Hoop
    • 1
  1. 1.Laboratorium voor Theoretische ElektrotechniekTechnische HogeschoolDelftNetherlands

Personalised recommendations