Advertisement

Microgravity Science and Technology

, Volume 19, Issue 5–6, pp 102–107 | Cite as

Mu and alpha EEG rhythms during the arrest reaction in microgravity

  • Leroy A. 
  • Saedeleer C. De 
  • Bengoetxea A. 
  • Cebolla A. 
  • Leurs F. 
  • Dan B. 
  • Berthoz A. 
  • McIntyre J. 
  • Cheron G. 
Article

Abstract

Mu and alpha oscillations (8–12 Hz) are the most prominent electroencephalographic rhythms observed in awake, relaxed subjects. Different cortical sources may participate in these oscillations and appear to be modulated by the sensorimotor context and functional demands. In microgravity, the marked reduction in multimodal graviceptive inputs to cortical networks participating in the representation of space could be expected to affect these spontaneous rhythms. Here, we report the results of an experiment conducted over the course of 3 space flights, in which we quantified the power of the mu and alpha rhythms in relation to the arrest reaction (i.e. in 2 distinct physiological states: eyes open and eyes closed). We observed that the power of the spontaneous mu and alpha rhythms recorded in the eyesclosed state in the sensorimotor areas (mu rhythm) and in the parieto-occipital cortex (alpha rhythm) increased in microgravity. The suppression coefficient produced by eye-opening/ closure state transition also increased in microgravity. These results are discussed in terms of current theories on the source and the physiological significance of these EEG rhythms.

Keywords

Space Flight Posterior Parietal Cortex Alpha Rhythm Galvanic Vestibular Stimulation Sensorimotor Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Steriade, M.: Corticothalamic resonance, states of vigilance and mentation. Neuroscience vol. 101 (2), p. 243 (2000)CrossRefGoogle Scholar
  2. [2]
    Baker, MR., Baker, SN.: The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. Journal of Physiology vol. 546, p. 931 (2003)CrossRefGoogle Scholar
  3. [3]
    Llinas, R., Pare, D.: Of dreaming and wakefulness. Neuroscience vol. 44, p. 521 (1991)CrossRefGoogle Scholar
  4. [4]
    Fries, P., Reynolds, JH., Rorle, A E., Desimone, R.: Modulation of oscil-latory neuronal synchronization by selective attention. Science vol. 291, p. 1560 (2001)CrossRefGoogle Scholar
  5. [5]
    Crick, F., Koch, C.: Towards a neurobiological theory of consciousness. Seminars in Neuroscience vol. 2, p. 263 (1990)Google Scholar
  6. [6]
    Llinas, R., Ribary, U.: Coherent 40-Hz oscillation characterizes dream state in humans. Proceedings of the National Academy of Sciences of the USA vol. 90, p. 2078 (1993)CrossRefGoogle Scholar
  7. [7]
    Varela, F., Lachaux, J P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience vol. 2, p. 229 (2001)CrossRefGoogle Scholar
  8. [8]
    Hinrichs, H., Machleidt, W.: Basic emotions reflected in EEG-coherences. International Journal of Psychophysiology vol. 13, p. 225 (1992)CrossRefGoogle Scholar
  9. [9]
    Gastaut, H.: Etude électrocorticographique de la réactivité des rythmes rolandiques. Revue Neurologique vol. 87, p. 176 (1952)Google Scholar
  10. [10]
    Donoghue, J P., Sanes, J N., Hatsopoulos, N G., Gaal, G.: Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology vol. 79, p. 159 (1998)Google Scholar
  11. [11]
    Pfurtscheller, G., Graimann, B., Huggins, JE., Levine, SP., Schuh, LA.: Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clinical Neurophysiology vol. 114, p. 1226 (2003)CrossRefGoogle Scholar
  12. [12]
    Wolpaw, JR., McFarland, D J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the USA vol. 101, p. 17849 (2004)CrossRefGoogle Scholar
  13. [13]
    Cochin, S., Barthelemy, C., Roux, S., Martineau, J.: Observation and execution of movement: Similarities demonstrated by quantified electroencephalography. European Journal of Neuroscience vol. 11, p. 1839 (1999)CrossRefGoogle Scholar
  14. [14]
    Berger, H.: Über das Elektrenkephalogramm des Menschen. Archive fur Psychiatrie und Nervenkrantheiten vol. 87, p. 527 (1929)CrossRefGoogle Scholar
  15. [15]
    Makeig, S., Enghoff, S., Jung, T P., Sejnowski, TJ.: A natural basis for efficient brain actuated control. IEEE Transaction on Rehabilitation Engineering vol. 8, p. 208 (2000)CrossRefGoogle Scholar
  16. [16]
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods vol. 15, p. 9 (2004)CrossRefGoogle Scholar
  17. [17]
    Narici, L.,Romani, G L.: Neuromagnetic investigation of synchronized spontaneous activity. Brain Topography vol. 2, 19 (1989)CrossRefGoogle Scholar
  18. [18]
    Andersen, R A., Snyder, L H., Bradley, D C., Xing, J.: Multimodal repre-sentation of space in the posterior parietal cortex and its use in planning movements. Annual Review Neuroscience vol. 20, p. 303 (1997)CrossRefGoogle Scholar
  19. [19]
    Andersen, R A., Shenoy, K V., Snyder, L H., Bradley, D C., Crowell, J A.: The contributions of vestibular signals to the representations of space in the posterior parietal cortex. Annals of the New York Academy of Sciences vol. 871, p. 282 (1999)CrossRefGoogle Scholar
  20. [20]
    Scherberger, H., Jarvis, MR., Andersen, R A.: Cortical local field potential encodes movement intentions in the posterior parietal cortex. Neuron vol. 46, p. 347 (2005)CrossRefGoogle Scholar
  21. [21]
    Bottini, G., Karnath, HO., Vallar, G., Sterzi, R., Frith, CD., Frackowiak, R S., Paulesu, E.: Cerebral representations for egocentric space: Functional-anatomical evidence from caloric vestibular stimulation and neck vibration. Brain vol. 124, p. 1182 (2001)CrossRefGoogle Scholar
  22. [22]
    Lobel, E., Kleine, JF., Bihan, D L.,Leroy-Willig, A., Berthoz, A.: Functional MRI of galvanic vestibular stimulation. Journal of Neurophysiology vol. 80, p. 2699 (1998)Google Scholar
  23. [23]
    Brandt, T., Dieterich, M.: The vestibular cortex. Its locations, functions, and disorders. Annals of the New York Academy of Sciences vol. 871, p. 293 (1999)CrossRefGoogle Scholar
  24. [24]
    Kahane, P., Hoffmann, D., Minotti, L., Berthoz, A.: Reappraisal of the human vestibular cortex by cortical electrical stimulation study. Annals of Neurology vol. 54, p. 615 (2003)CrossRefGoogle Scholar
  25. [25]
    Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., Lacquaniti, F.: Representation of visual gravitational motion in the human vestibular cortex. Science vol. 308, p. 416 (2005)CrossRefGoogle Scholar
  26. [26]
    Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science vol. 304, p. 926 (2004)CrossRefGoogle Scholar
  27. [27]
    Steriade, M., Timofeev, I.: Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron vol. 37, p. 563 (2003)CrossRefGoogle Scholar
  28. [28]
    Feige B, Scheffler K, Esposito F., Di Salle F, Hennig J & Seifritz E. Cortical & subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol 93, p.2864–2872 (2005)CrossRefGoogle Scholar
  29. [29]
    Pfurtscheller G. Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol 83, p. 62–69 (1992)CrossRefGoogle Scholar
  30. [30]
    Salinsky M, Oken B. & Morehead L. Test-retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79,p. 382–392 (1991)CrossRefGoogle Scholar
  31. [31]
    Steriade M & Llinás RR. The functional states of the thalamus and the associated neuronalGoogle Scholar

Copyright information

© Z-Tec Publishing, Bremen 2007

Authors and Affiliations

  • Leroy A. 
    • 1
    • 2
    • 3
    • 4
  • Saedeleer C. De 
    • 1
    • 2
    • 3
    • 4
  • Bengoetxea A. 
    • 1
    • 2
    • 3
    • 4
  • Cebolla A. 
    • 1
    • 2
    • 3
    • 4
  • Leurs F. 
    • 1
    • 2
    • 3
    • 4
  • Dan B. 
    • 1
    • 2
    • 3
    • 4
  • Berthoz A. 
    • 1
    • 2
    • 3
    • 4
  • McIntyre J. 
    • 1
    • 2
    • 3
    • 4
  • Cheron G. 
    • 1
    • 2
    • 3
    • 4
  1. 1.Laboratory of Neurophysiology and Biomechanics of MovementUniversité Libre de BruxellesBrussels
  2. 2.Laboratory of ElectrophysiologyUniversité de Mons-HainautMonsBelgium
  3. 3.Laboratoire de Neurobiologie des Réseaux SensorimoteursCNRS — Université Paris DescartesParisFrance
  4. 4.Laboratoire de Physiologie de la Perception et de l’ActionCNRS — Collége de FranceParisFrance

Personalised recommendations