Applied Biochemistry and Biotechnology

, Volume 69, Issue 2, pp 91–97 | Cite as

Observation of geometric structure of collagen molecules by atomic force microscopy

  • V. Baranauskas
  • B. C. Vidal
  • N. A. Parizotto
Original Articles


Atomic force microscopy was used to study the geometric structure of collagen fibrils and molecules of rat calcanean tendon tissues. The authors found that the diameter of the fibrils ranged from 124 to 170 nm, and their geometric form suggested a helical winding with spectral period from 59.4 to 61.7 nm, close to the band dimensions reported by electron microscopy. At high magnification, the surface of these bands revealed images that probably correspond to the almost crystalline array of collagen molecules, with the triple helix structure almost visible. The typical helix width is 1.43 nm, with main periods of 1.15 and 8.03 nm, very close to the dimensions reported by X-ray diffraction.

Index Entries

Atomic force microscopy collagen molecules collagen fibrils rat tendon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eyre, D. K. (1980),Science 207, 1315.Google Scholar
  2. 2.
    Brodsky, B. and Shah, N. K. (1995),FASEB J. 9, 1538.Google Scholar
  3. 3.
    Eyre, D. E. and Wu, J. (1995),J. Rheumatol. 22, 82.Google Scholar
  4. 4.
    Hulmes, D. J. S. (1995),Biophys J. 68, 1661.Google Scholar
  5. 5.
    Kühn, K. and Glanville, R. W. (1980), inBiology of Collagen, Viidik, A. and Vuust, J. eds., Academic, London, pp. 1–14.Google Scholar
  6. 6.
    Light, N. D. and Barley, A. J. (1980), inBiology of Collagen, Viidik, A. and Vuust, J. eds., Academic, London, pp. 15–38.Google Scholar
  7. 7.
    Miller, A. (1980), inBiology of Collagen, Viidik, A. and Vuust, J., eds., Academic, London, pp. 39–52.Google Scholar
  8. 8.
    Viidik, A. (1980), inBiology of Collagen, Viidik, A. and Vuust, J., eds., Academic, London, pp. 257–280.Google Scholar
  9. 9.
    Glimcher, M. J. and Krane, S. M. (1968), Treatise on Collagen: Biology of Collagen, B. S. Gould, ed., Academic, London, vol. 2, part B, pp. 108–135.Google Scholar
  10. 10.
    Vidal, B. C. (1980),Cell. Molec. Biol. 26, 415.Google Scholar
  11. 11.
    Vilarta, R. and Vidal, B. C. (1989),Matrix Collagen Rel. Res. 9, 56.Google Scholar
  12. 12.
    Raspanti, M., Guizzardi, S., Strocchi, R., and Ruggeri, A. (1996),Acta Anat. 155, 249.CrossRefGoogle Scholar
  13. 13.
    Thale, A., Tillmann, B., and Rochels, R. (1996),Ophthalmologica 210, 142.CrossRefGoogle Scholar
  14. 14.
    Murakumo, M., Ushiki, T., Abe, K., Matsumura, K., Shinno, Y., and Koyanagi, T. (1995),J. Urol. 154, 251.CrossRefGoogle Scholar
  15. 15.
    Itoh, T., Tsuchiya, H., Yoshimura, Y., Hashimoto, M., and Konishi, T. (1996),Jap. J. Appl. Phys. 35, 6172.CrossRefGoogle Scholar
  16. 16.
    Binnig, G. Quate, C. F., and Gerber, C. (1986),Phys. Rev. Lett. 56, 930.CrossRefGoogle Scholar
  17. 17.
    Peled, A., Baranauskas, V., Rodrigues, C., Art-Weisman, D., and Grantman, L. (1995),J. Appl. Phys. 77, 6208.CrossRefGoogle Scholar
  18. 18.
    Pereira, R. D., Parizotto, N. A., and Baranauskas, V. (1996),Appl. Biochem. Biotechnol. 59, 135.CrossRefGoogle Scholar
  19. 19.
    Kajava, A. V. (1991),J. Mol. Biol. 218, 815.CrossRefGoogle Scholar
  20. 20.
    Mayo, K. H. (1996),Biopolymers 40, 359.CrossRefGoogle Scholar
  21. 21.
    Bella, J., Eaton, M., Brodsky, B., and Berman, H. M. (1994),Science 266, 75.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • V. Baranauskas
    • 1
  • B. C. Vidal
    • 2
  • N. A. Parizotto
    • 3
  1. 1.Department of Semiconductors and Photonics
  2. 2.Department of Cell Biology, C. P. 6109State University of CampinasCampinasBrazil
  3. 3.Physiotherapy DepartmentUniversidade Federal de São CarlosBrazil

Personalised recommendations