Advertisement

Journal of Mountain Science

, Volume 1, Issue 1, pp 3–17 | Cite as

The pleistocene glaciation in the Karakoram-mountains: Reconstruction of past glacier extensions and ice thicknesses

  • Matthias Kuhle
Article

Abstract

Geomorphological and Quaternarygeological field- and laboratory data (Fig.1) are introduced and interpreted with regard to the maximum Ice Age (LGM) glaciation of the Central-and South Karakoram in the Braldu-, Basna-, Shigar-and Indus valley system as well as on the Deosai plateau between the Skardu Basin and the Astor valley (Fig.2). These data result from two research expeditions in the years 1997 and 2000. They show that between c. 60 and 20 Ka the Central Karakorum and its south slope were covered by a continuous c. 125,000 km2 sized ice stream network. This ice stream network flowed together to a joint parent glacier, the Indus glacier. The tongue end of the Indus glacier reached down to 850 ∼ 800 m a.s.l. In its centre the surface of this Indus ice stream network reached a height of a good 6000 m. Its most important ice thicknesses amounted to c. 2400 ∼ 2900 m.

Keywords

Karakoram paleoclimate glacial geomorphology last glacial period coalescing ice stream network glacier thickness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, B. G. 2000.Ice Age Norway: landseapes formed by Ice Age Glaciers. Oslo: Univ.-Forl. Pp 1–216.Google Scholar
  2. Bürgisser, H.M., Gansser, A., Pika, J. 1982. Late glacial lake sediments of the Indus valley area, northwestern Himalaya.Ecologae geologica Helvetica 75(1): 51–63.Google Scholar
  3. Cronin, V.S. 1989. Structural setting of the Skardu intermontane basin, Karakoram Himalaya, Pakistan.Geological Society of America Special Paper 232 (Tectonics of the Western Himalayas). Pp 213–216.Google Scholar
  4. Dainelli, G. 1922. Studi sul Glaciale. In:Risultati Geologici e Geografici, Relazioni scientifiche della Spedizione Italiana De Fillipi nell’ Himalaya, Caracorum e Turchestan Cinese (1913–1914). Vol.3 (2) : 1–655, Fig. 73, 177 Tafeln. Tavole, Bologna (Nicola Zanichelli).Google Scholar
  5. Ding, Yongjian, 1987. The study of the Thermo-Hydrological Environment of Glacial Development in the Karakoram North-side. Lanzhou, VR-China (unpublished manuscript).Google Scholar
  6. Engelhardt, W. V. 1973. Die Bildung von Sedimenten und Sedimentgesteinen. In:Sediment — Petrologie III: 1–378, 133 Abb., 55 Tab. Stuttgart (Schweizerbart).Google Scholar
  7. Finsterwalder, R. 1938. Die geodätischen, gletscherkundlichen und geographischen Ergebnisse der Deutschen Himalaya Expedition 1934 zum Nanga Parbat. Deutsche Forschung, Neue Folge, Schrften d. Deutschen Forschungsgemeinschaft; mit der Karte der Nanga Parbat Gruppe 1.50.000 und 1:100.000, 2: 1–201, 41 Abb., 1 Farbtafel, 8 Beilagen, Berlin (Karl Siegismund Verlag).Google Scholar
  8. Haserodt, K. 1989. Zur pleistozänen und postglazialen Vergletscherung zwischen Hindukusch, Karakorum und Westhimalaya.- Beiträge und Materialien zur Regionalen Geographie. 2; Hochgebirgsräume Nordpakistans im Hindukush, Karakorum und Westhimalaya. 14 Abb.: 181–233. Berlin (Geogr. Inst. T.U.-Berlin Selbstverlag).Google Scholar
  9. Hewitt, K. 1999. Quaternary Moraines vs Catastrophic Rock avalanches in the Karakoram Himalaya, Northern Pakistan.Quaternary Research 51: 220–237, 11 Fig., 4 Tab.CrossRefGoogle Scholar
  10. Höfer, H. V. 1879. Gletscher und Eiszeitstudien. In: Schriften d. Akad. d. Wiss. Wien, Math. naturw. Kl. 74, Bd. 79, Wien.Google Scholar
  11. Kamp, U. 1999. Jungquartäre Geomorphologie und Vergletscherung im östlichen Hindukusch. Chitral, Nordpakistan.Berliner Geographische Studien 50: 12 Tabellen; 62 Abb.; 42 Fotos; 12 Karten; 24 Katenbeiblätter: 1–254; Berlin (Geogr. Inst. T.U.-Berlin Selbstverlag).Google Scholar
  12. Klebelsberg, R. V. 1948.Handbuch der Gletscherkunde und Glazialgeologie. Bd. 1 u. 2. Pp 1–403; 404–1028. 93 Abb. Wien (Springer).Google Scholar
  13. Kuhle, M. 1988a. Zur Geomorphologie der nivalen und subnivalen Höhenstufe in der Karakorum-N-Abdachung zwischen Shaksgam-Tal und K2 Nordsporn: Die quartäre Vergletscherung und ihre geoökologische Konsequenz. In: Tagungsbericht und wissenschaftliche Abhandlung des 46. Deutschen Geographentag 1987 München 12.–16. Okt. 1987. PP 413–419, 8 Fig. Stuttgart (Franz Steiner Verlag Wiesbaden).Google Scholar
  14. Kuhle, M. 1988b. The Pleistocene Glaciation of Tibet and the Onset of Ice Ages: An Autocycle Hypothesis.GeoJournal 17 (4, Tiber and High-Asia, Results of the Sino-German Joint Expeditions I): 581–595, 13 Fig. Dordrecht / oston / London (Kluwer Academic Publisher).Google Scholar
  15. Kuhle, M. 1988c. Die eiszeitliche Vergletscherung W-Tibets zwischen Karakorum und Tarim-Becken und ihr Einfluß auf die globale Energiebilanz.Geographische Zeitschrift.76 (3): 135–148, 8 Photos, 6 Diagramme, Stuttgart (Franz Steiner Verlag Wiesbaden).Google Scholar
  16. Kuhle, M. 1989. Die Inlandvereisung Tibets als Basis einer in der Globalstrahlungsgeometrie fußenden, reliefspezifischen Eiszeittheorie.Petermanns Geographische Mitteilungen 133 (4): 265–285, 20 Abb. Gotha (VEB Hermann Haack).Google Scholar
  17. Kuhle, M. 1991. Die Vergletscherung Tibets und ihre Bedeutung für die Geschichte des nordhemisphärischen Inlandeises. In: Sitzungsher. d. Akademie d. Wissensch. u. d. Literatur Mainz,Paläoklimaforschung.1 (Klimageschichtliche Probleme der letzten 130 000 Jahre, Hrsg. Frenzel, B.): 293–306, 8 Abb, Stuttgart New York (Gustav Fischer Verlag).Google Scholar
  18. Kuhle, M. 1994. Present and Pleistocene Glaciation on the North-Western Margin of Tibet between the Karakorum Main Ridge and the Tarim Basin Supporting the Evidence of a Pleistocene Inland Glaciation in Tibet.GeoJournal 33 (2/3), Tibet and High Asia, Results of the Sino-German and Russian-German Joint Expeditions. Pp 133–272, 138 Fig., 3 Tab. Dordrecht / Boston / London (Kluwer Academic Publisher).Google Scholar
  19. Kuhle, M. 1997. New Findings concerning the Ice Age (LGM) Glacier Cover of the East-Pamir, of the Nanga Parbat up to the Central Himalaya and of Tibet, as well as the Age of the Tibetan Inland Ice.GeoJournal 42 (2–3, Tibet and High Asia. Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene (Ice Age Research) IV 87–257, 50 Fig., 4 Tab., 151 Photos. Dordrecht / Boston / London (Kluwer Academic Publisher).Google Scholar
  20. Kuhle, M. 1998. Reconstruction of the 2.4 Million qkm Late Pleistocene Ice Sheet on the Tibetan Plateau and its Impact on the Global Climate.Quaternary International 45/46: 71–108 (Erratum: Vol.47/48: 173–182 (1998) included), 28 Fig., 2 Tab. Oxford, Tarrytown (Pergamon, Elsevier Science).CrossRefGoogle Scholar
  21. Kuhle, M., Meiners, S. and Iturrizaga, L. 1998. Glacier-induced Hazards as a Consequence of glacigenic Mountain Landscapes, in particular glacier- and moraine-dammed Lake outbursts and Holocene Debris production. In:Gemorphological Hazards in High Mauntain Areas. The GeoJournal Library, Pp 63–96, 6 Fig., 10 Photos; Netherlands (Kluwer Academic Publisher).Google Scholar
  22. Lydekker, R. 1883. The Geology of Kashmir and Chamba Territories, and the British District of Khagan.Memoirs of the geological Survey of India. Bd. XXII: 1–186.Google Scholar
  23. Mahaney, W.C. 1991. Glacial crushing, weathering and diagenetic histories of quartz grains inferred from scanning electron microscopy. In:Glacial Environments, Processes, Sediments and Landforms. Pergamon, LondonGoogle Scholar
  24. Miehe, G., Winiger, M., Böhner, J.,et al. 2000. Climatic Diagram Map of High Asia 1: 4 000 000. Cartography: Enderle,C, printed by LVA Nordrhein-Westfalen, Marburg.Google Scholar
  25. Norin, E. 1925. Preliminary notes on the late Quaternary glaciation of the Northwest Himalaya.Geografiska Annaler 7 Google Scholar
  26. Oestreich, K. 1906. Die Täler des nordwestlichen Himalaya. Beobachtungen und Studien.Petermanns Geographische Abhandlungen, Ergänzungsheft 155: 1–106, 36 Photos, 39 Fig., 1 Karte. Gotha (Justus Perthes).Google Scholar
  27. Owen, L. 1988a. Terraces, Uplift and Climate, the Karakoram Mountains, Northern Pakistan. Unpublished Ph.D. thesis, Department of Geography, university of Leicester, UKGoogle Scholar
  28. Owen, L. 1988b. Wet-sediment deformation of Quaternary and recent sediments in the Skardu Basin, Karakoram mountains, Pakistan. In:Glaciotectonies. Forms and Processes Rotterdam (Balkerna).Google Scholar
  29. Shroder, J. F. 1989. Hazards of the Himalayas.American Scientist 7: 564–573.Google Scholar
  30. Shroder, J. F., Jr., Owen, L. and Derbyshire, E. 1993. Quaternary glaciation of the Karakoram and Nanga Parbat Himalaya. In:Himalaya to the sea: Geology, Geomorphology and the Quaternary. Pp 132–158. New York: RoutledgeGoogle Scholar
  31. Troll, C. 1938a. Der Nanga Parbat als geographische Erscheinung.Ein Bildbericht. Zeitschrift für Erdkunde 6 (1/7): 304–313, 14 Abb. Frankfurt/Main (Verlag Moritz Diesterweg).Google Scholar
  32. Troll, C. 1938b. Der Nanga Parbat als Ziel deutscher Forschung.Zeitschrift der Gesellschaft für Erdkunde Berlin 73: 1–26, 9 Abb., 1 Fig., 3 Tab.; Berlin (Selbstverlag).Google Scholar
  33. Wünnemann, B., Pachur, H.-J., Li Jijunet al. 1998. Chronologie der pleistozänen und holozänen Seespiegelschwankungen des Gaxun Nur / Sogo Nur und Baijian Hu, Innere Mongolei, Nordwestchina.Petermanns Geographische Abhandlungen Vol142: 191–206, 8 Fig. Gotha (Justus Perthes).Google Scholar
  34. Xie, Zichu 1987. The Characteristics of the Present Glaciers on the North-slope of K2. Lanzhou, VR-China. unpublishedGoogle Scholar
  35. Zanettin, B. 1964. Geology and Petrology of Haramosh Mango Gusor Area. In:Italian Expeditions to the Karakoram (K2) and Hindu Kush VolIII Geology-Petrology; Leiden (Brill).Google Scholar
  36. Map: Operational Navigation Chart 1974) G-7, Scale 1: 1,000,000, Edition 5; Defense Mapping Agency Aerospace Center, St. Louis Air Force Station, Missouri 63118, compiled July 1974Google Scholar

Copyright information

© Institute of Moutain Hazards and Environment, Chinese Academy of Sciences and Science Press 2004

Authors and Affiliations

  • Matthias Kuhle
    • 1
  1. 1.Department of Geography and High Mountain GeomorphologyGeographical Institute University of GöttingenGöttingenGermany

Personalised recommendations