Advertisement

Degradation of high mountain ecosystems in northern Europe

  • Jörg Löffler
Article

Abstract

Data material of a long-term high mountain ecosystem research project was used to interpret the grazing impact of reindeers. In central Norway investigations were conducted to both, areas where reindeer grazing is excluded, and areas where intensive pasturing is present for a long period of time. The comparative analysis of grazing impact was based on similar environmental conditions. The results were transposed to northern Norway where dramtic overgrazing had been exceeding the carrying capacity. Using landscape ecological mappings, especially of vegetation and soils, the impact of reindeer grazing in different areas became obvious. Non-grazed lichen-dominated ecosystems of the snow-free locations functioned sensitively near the limit of organism survival. These localities were most influenced by grazing as they offer the winter forage to the reindeers. So, intensive grazing in central Norway led to landscape degradation by destruction of the vegetation and superinduced by soil erosion. Those features were comparable to the situation in northern Norway, where a broad-scale destruction of the environment combined with a depression of the altitudinal belts had occurred due to overgrazing. Functioning principles of intact high mountain systems were explained and used to interpret the environmental background for the understanding of degradation phenomena. Finally, the use of a new model calculating the carrying capacity of high mountain landscape was discussed.

Keywords

Degradation reindeer grazing impact high mountains northern Europe 

References

  1. A. G Boden. 1982 –1996. Bodenkundliche Kartieranleitung. 3rd and 4th edition.Stuttgart: Schweizerbart.Google Scholar
  2. Bernes C. 1993. The nordic environment — present state, trends and threats, Nord 12. Copenhagen: Nordic Council of Ministers.Google Scholar
  3. Billings W. D and Bliss LC. 1959. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology40: 388–397.CrossRefGoogle Scholar
  4. Billings W. D. 1973. Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbance. Bio. Science23: 697–704.Google Scholar
  5. Bøcher J and Petersen PM. 1998. Greenland. In: Wielgolaski FE, editor. Polar and alpine tundra. Ecosystems of the World 3. Amsterdam: Elsevier, Pp 685–720.Google Scholar
  6. Bøcher T. W. 1938. Biological distribution types in the flora of Greenland. Meddelelser om Grønland 106.Google Scholar
  7. Braun-Blanquet J. 1964. Pflanzensoziologie. Wien: Springer.Google Scholar
  8. Burkhart B and Müller F. 2002. Development of a General Indicator Concept for Reindeer Management. Http://www.rangifer.no/ eng/abstracts-2002-p.html, 09.10.2003.Google Scholar
  9. Chernov Y. I and Matveyeva NV. 1998. Arctic ecosystems in Russia. In: Wielgolaski FE, editor. Polar and alpine tundra. Ecosystems of the World 3. Amsterdam: Elsevier. Pp 361–507.Google Scholar
  10. Dahl E. 1956. Rondane. Mountain vegetation in south Norway and its relation to the environment. Skr. utg. av Det Norske Vid. Akad. i Oslo. Mat.-Nat. Kl. 3. Oslo: Aschehoug.Google Scholar
  11. Dahl E. 1975. Flora and plant sociology in Fennoscandian tundra areas. In: Wielgolaski E, editor. Fennoscandian tundra ecosystems. Part 1. Plants and microorganisms. Ecological Studies 16. Berlin: Springer, pp. 63–67.Google Scholar
  12. Dahl E. 1986. Zonation in arctic and alpine tundra and fellfield ecobiomes. In: Polunin N, editor. Ecosystem theory and application. Wiley, Chichester, pp 35–62.Google Scholar
  13. Dahl E. 1998. The phytogeography of northern Europe (British Isles, Fennoscandia and adjacent areas). Cambridge: University Press.Google Scholar
  14. Eastman J. R. 1999. Guide to GIS and image processing. Idrisi 32. Vol. 1. Clark Labs. Worchester.Google Scholar
  15. Fægri K. 1972. Geo-ökologische Probleme der Gebirge Skandinaviens. In: Troll C, editor, Geoecology of the high-mountain regions of Eurasia: Proceedings of the symposium of the International Geographical Union, commission on high-altitude geoecology, November 20–22, 1969 at Mainz in connection with the Akademie der Wissenschaften und der Literatur in Mainz, Kommission für Erdwissenschaftliche Forschung. Erdwissenschaftliche Forschung 4. Wiesbaden: Steiner. Pp 98–106.Google Scholar
  16. Fremstad E. 1997. Vegetationstyper i Norge. Norsk institutt for naturforskning, Temahefte 12, Trondheim.Google Scholar
  17. Fries T. C. E. 1913. Botanische Untersuchungen im nördlichsten Schweden. Ventesk. och prakt. unders. j Lappl. Flora och Fauna 2. Uppsala.Google Scholar
  18. Gjærevoll O. 1956. The plant communities of the Scandinavian alpine snowbeds. Det Kong. Norske Vid. Selsk. Skr. 1. Trondheim.Google Scholar
  19. Hemmer I. 1985. Entwicklung und Struktur der Rentierwirtschaft in Finnmark und Troms (Nord-norwegen). Bamberger Wirtschaftsgeographische Arbeiten 1. Bamberg: Selbstverlag.Google Scholar
  20. Hill M. O and Gauch HG. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio42: 47–58.CrossRefGoogle Scholar
  21. Isard S. A and Belding MJ. 1989. Evapotranspiration from the alpine tundra of Colorado, USA. Arctic and Alpine Research21: 71–82.CrossRefGoogle Scholar
  22. Johansen B and Tømmervik H. 1993. Finnmarksvidda vegetationskartlegging — vegetationstyper, lavbeiter og endringer i lavdekket innen reinbeitedistrikt 30 og 31, Finnmarksvidda. Norut Informasjon-steknologi as. Tromsø.Google Scholar
  23. Jones H. G, Pomeroy J. W, Walker D. A and Hoham R. W. 2001. Snow ecology. An interdisciplinary examination of snow-covered ecosystems. Cambridge: University Press.Google Scholar
  24. Jongman R. H. G, Ter Braak C. J. F and Van Tongeren O. F. R, editors. 1995. Data analysis in community and landscape ecology. Cambridge.Google Scholar
  25. Karlsen S. R, Johansen B and Høgda K. A. 1996. Vegetasjonskartlegging og beitevurdering av reinbei-tedistrikt 14A Spiertagaissa og Porsangmoen / Halkavarre skyte og øvingsfelt. Norut Informasjon-steknologi as. Tromsø.Google Scholar
  26. Karlsen S. R, Tømmervik H, Solheim I, Johansen B, Høgda K, A and Engelsen O. 1998. Satellite based phenology study in eastern part of Finnmark, northern Norway, Norut Informasjonsteknologi as. Tromsø.Google Scholar
  27. Kashulina G, Reimann C, Finne T. E, Halleraker J. H, Äräs M and Chekushin VA. 1997. The state of the ecosystem in the central Barents region: scale, factors and mecha-nisms of disturbance. Sci Tot Env206: 203–225.Google Scholar
  28. King L. 1984. Permafrost in Skandinavien. Ergebnisse aus Lappland, Jotunheimen und Dovre/Rondane. Heidelberger Geographische Arbeiten 76.Google Scholar
  29. Knox R. 1989. Effects of detrending and rescaling on correspondence analysis: solution stability and accuracy. Vegetatio83: 129–136.CrossRefGoogle Scholar
  30. Köhler B, Löffler J, Wundram D. 1994. Problems of local geoecovariance in the central Norwegian mountains. Norwegian Journal of Geography48: 99–111.Google Scholar
  31. Konstantinov Y and Vladimirova V. 2002. Ambigious transition: agrarian reforms, management, and coping practices in Murmansk region reindeer herding. MPI Working Paper35: 1–29. Max-Planck Institute for Social Anthropology, Halle/Saale.Google Scholar
  32. Körner C. 1999. Alpine plant life. Functional plant ecology of high mountain ecosystems. Berlin: Springer.Google Scholar
  33. Löffler J. 1998. Geoökologische Untersuchungen zur Struktur mittelnorwegischer Hochgebirgs-ökosysteme. Oldenburger Geoökologische Studien 1. Oldenburg: Bibliotheks-und Informations-system.Google Scholar
  34. Löffler J. 1999. Neuere Ergebnisse geoökologischer Kartierungen in Nord-Norwegen. Norden13: 243–265. Bremen.Google Scholar
  35. Löffler J. 2000. High mountain ecosystems and landscape degradation in northern Norway. Mountain Research and Development20: 356–363.CrossRefGoogle Scholar
  36. Löffler J. 2002. Altitudinal changes of ecosystem dynamics in the central norwegian high mountains. Die Erde133: 155–186.Google Scholar
  37. Löffler J. 2003. Micro-climatic determination of vegetation patterns along topographical, altitudinal, and oceanic-continental gradients in the high mountains of Norway. Erdkunde57: 232–249.CrossRefGoogle Scholar
  38. May D. E. 1976. The response of alpine tundra vegetation in Colorado to environmental modification. PhD thesis, University of Colorado, Boulder.Google Scholar
  39. Meier K. D. 1996: Studien zur Periglaziärmorphologie der Varanger-Halbinsel, Nordnorwegen (mit einem Vergleich Finnmark — Nordenskiöldland, Zentrales Westspitzbergen). Norden 11. Bremen.Google Scholar
  40. Messerli B, Ives J. D. editors. 1997. Mountains of the World. A global priority. New York: Pauthenon.Google Scholar
  41. Moen A. 1999. National atlas of Norway. Vegetation. Hønefoss: Norwegian mapping authority.Google Scholar
  42. Moen J and Danell Ö. 2003: Reindeer in the Swedish Mountain. An assessment of grazing impacts. Ambio33: 397–402.Google Scholar
  43. Molenaar G.J. d. 1987. An ecohydrological approach to floral and vegetational patterns in arctic landscape ecology. Arctic and Alpine Research19: 414–424.CrossRefGoogle Scholar
  44. Mosimann T. 1984a. Landschaftsökologische Komplexanalyse. Steiner, Wiesbaden.Google Scholar
  45. Mosimann T. 1984b. Methodische Grundprinzipien für die Untersuchung von Geoökosystemen in der topologischen Dimension. Geomethodica 9, Basel. Pp 31–65.Google Scholar
  46. Munsell. 1992. Soil Color Charts. Baltimore: Munsell.Google Scholar
  47. Norut. 1999. Endringer i vegetasjonsdekket på Finnmarksvidda http://www.itek.norut.no/vegetasjon/10fi/10fi.htm. Norut Informasjonsteknologi as. Tromsø.Google Scholar
  48. Økland R. H. 1990. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia Suppl1: 1–233.Google Scholar
  49. Økland R. H. 1999. On the variation explained by ordination and constrained ordination axes. J Vegetation Sci10: 131–136.CrossRefGoogle Scholar
  50. Oksanen J and Moen J. 1994. Species-specific plant response to exclusion of grazers in three Fennoscandian tundra habitats. Ecoscience1: 31–39.Google Scholar
  51. Olofsson J, Kitti H, Rautiainen P, Stark S and Oksanen L. 2001. Effects of summer grazing by reindeer on composition of vegetation, productivity and nitrogen cycling. Ecography24: 13–24.CrossRefGoogle Scholar
  52. Påhlsson L. 1994: Vegetationstyper i Norden. TemaNord 1994: 665. Nordiska ministerrådet, Copenhagen.Google Scholar
  53. Reimers E, Villmo L, Gaare E, Holthe V and Skogland T. 1980. Status of Rangifer in Norway including Svalbard. In: Reimers E, Gaare E, Skjenneberg S, editors. Proc. 2nd Int. Reindeer/Caribou Symp., Røros, Norway, 1979. Direktoratet for vilt og ferskvannsfisk, Trondheim. Pp 774–785.Google Scholar
  54. Reindriftsforvaltningen. 2003. Ressursregnskap for reindriftsnæringen. For Reindriftsåret 1. April 2001 – 31. Mars 2002. Alta.Google Scholar
  55. Reynolds J. F and Tenhunen J. D, editors. 1996. Landscape function and disturbance in arctic tundra. Ecological Studies 120. Berlin: Springer.Google Scholar
  56. Rydgren K. 1994. Low-alpine vegetation in Gutulia National Park, Egerdal, Hedmark, Norway, and its relation to the environment. Sommerfeltia21: 3–47.Google Scholar
  57. Severinsen A. 1987. De sørligste sørsamer. Fjell Vidde5: 45–55.Google Scholar
  58. Sigmond E, Gustavson M and Roberts D. 1984. Berggrunnskart over Norge - M. 1: 1.000.000. Norges geologiske undersøkelse. Trondheim.Google Scholar
  59. Stäblein G. 1979. Böden und Relief in Westgrönland. Z. Geomorph. N. F. Suppl.-Bd.33: 232–245.Google Scholar
  60. Steinhardt U. 2002. Landscape ecological complex analysis. In: Bastian O and Steinhardt U. editors. Development and perspectives of landscape ecology. Kluwer, Dordrecht. Pp 160–168.Google Scholar
  61. Tedrow J. C. F and Cantlon JE. 1958. Concepts of soil formation and classification in arctic regions. Arctic11: 166–179.Google Scholar
  62. Ter Braak C. J. F and Prentice I. C. 1988. A theory of gradient analysis. Adv Ecol Res 18: 271–317. Tømmervik H, Johansen B. 1992. Miljøundersøkelser i Elgå reinbeitedistrikt. Vegetajonskart med beitevurderinger. ForskStift. Univ. Tromsø Avd. InformTechnol. Rapp.2014: 1–97.CrossRefGoogle Scholar
  63. Ter Braak C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology67: 1167–1179.CrossRefGoogle Scholar
  64. Ter Braak C. J. F. 1994. Canonical community ordination. Part I: basic theory and linear methods. Ecoscience1: 127–140.Google Scholar
  65. Thannheiser D and Treude E. 1981. Masi (Nordnorwegen). Jüngere Strukturwandlungen in einem lappischen Dorf. In: Butzin B, editor. Entwicklungs- und Planungsprobleme in Nordeuropa. Münstersche Geographische Arbeiten 12. Paderborn.Google Scholar
  66. Thannheiser D. 1975. Vegetationsgeographische Untersuchungen auf der Finnmarksvidda im Gebiet von Masi/Norwegen. Westfälische Geographische Studien 31. Münster.Google Scholar
  67. Thannheiser D. 1977. Subarctic birch forest in Norwegian Lappland. Le Naturaliste Canadien104: 151–156.Google Scholar
  68. Tømmervik H and Johansen B. 1992. Miljøundersøkelser i Elgå reinbeitedistrikt. Vegetajonskart med beite-vurderinger. ForskStift. Univ. Tromsø Avd Inform Technol Rapp 2014.Google Scholar
  69. Virtanen R, Dirnböck T, Dullinger S, Grabherr G, Pauli H, Staudinger M and Villar L. 2003. Patterns in plant species richness of European high mountain vegetation. In: Nagy L, Grabherr G, Körner C and Thompson DBA. Alpine diversity in Europe. Berlin: Springer. Pp 149–72.Google Scholar
  70. Virtanen R. 2000. Effects of grazing on above ground biomass on a mountain snow bed, NW Finland. Oikos90: 295–300.CrossRefGoogle Scholar
  71. Waide R. B, Willig M. R, Steiner C. F, Mittelbach G, Gough L, Dodson S. I, Juday G. P and Parmenter R. 1999. The relationship between productivity and species richness. Annu Rev Ecol Syst30: 257–300.CrossRefGoogle Scholar
  72. Wielgolaski FE, editor. 1998. Polar and alpine tundra. Ecosystems of the World 3. Amsterdam: Elsevier.Google Scholar
  73. Wundram D. 2003. Die Bedeutung des Temperaturhaushalts für die Prozessdynamik mittelnorwegischer Hochgebirgsökosysteme. Dissertation, Bibliotheks- und Informationssystem. Universität Oldenburg.Google Scholar

Copyright information

© Institute of Moutain Hazards and Environment, Chinese Academy of Sciences and Science Press 2004

Authors and Affiliations

  • Jörg Löffler
    • 1
  1. 1.Institute of Biology and Environmental SciencesUniversity of OldenburgOldenburgGermany

Personalised recommendations