Applied Biochemistry and Biotechnology

, Volume 39, Issue 1, pp 301–322 | Cite as

Effects of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenicEscherichia coli

  • Hugh G. Lawford
  • Joyce D. Rousseau
Session 3 Applied Biological Research II

Abstract

Efficient utilization of the pentosan fraction of hemicellulose from lignocellulosic feedstocks offers an opportunity to increase the yield and to reduce the cost of producing fuel ethanol. The patented, genetically engineered, ethanologenEscherichia coli B (pLOI297) exhibits high-performance characteristics with respect to both yield and productivity in xylose-rich lab media. In addition to producing monomer sugar residues, thermochemical processing of biomass is known to produce substances that are inhibitory to both yeast and bacteria. During prehydrolysis, acetic acid is formed as a consequence of the deacetylation of the acetylated pentosan. Our investigations have shown that the acetic acid content of hemicellulose hydrolysates from a variety of biomass/waste materials was in the range 2–10 g/L (33–166 mM). Increasing the reducing sugar concentration by evaporation did not alter the acetic acid concentration. Acetic acid toxicity is pH dependent. By virtue of its ability to traverse the cell membrane freely, the undissociated (protonated) form of acetic acid (HAc) acts as a membrane protonophore and causes its inhibitory effect by bringing about the acidification of the cytoplasm. With recombinantE. coli B, the pH range for optimal growth with glucose and xylose was 6.4–6.8. With glucose, the pH optimum for ethanol yield and volumetric productivity was 6.5, and for xylose it was 6.0 and 6.5, respectively. However, the decrease in growth and fermentation efficiency at pH 7 is not significant. At pH 7, only 0.56% of acetic acid is undissociated, and at 10 g/L, neither the ethanol yield nor the maximum volumetric productivity, with glucose or xylose, is significantly decreased. The “uncoupling” effect of HAc is more pronounced with xylose and the potency of HAc is potentiated in a minimal salts medium. Controlling the pH at 7 provided an effective means of circumventing acetic acid toxicity without significant loss in fermentation performance of the recombinant biocatalyst.

Index Entries

Fuel ethanol acetic acid pH xylose recombinantE. coli

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wright, J. D. (1988),Chem. Eng. Progress 84, 62–68.Google Scholar
  2. 2.
    Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735–753.Google Scholar
  3. 3.
    Bull, S. R. (1990),Energy from Biomass & Wastes XIV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 1–14.Google Scholar
  4. 4.
    Lynd, L. R. (1990),Appl. Biochem. Biotechnol 24/25, 695–719.Google Scholar
  5. 5.
    Lynd, L. R., Cushman, J. H., Nicholas, R. J., and Wyman, C. E. (1991),Science 251, 1318–1323.CrossRefGoogle Scholar
  6. 6.
    Grethlein, H. E. (1985),Bio/Technology 3, 155–160.CrossRefGoogle Scholar
  7. 7.
    Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984),Biotech. Bioeng. Symp. 14, 139–157.Google Scholar
  8. 8.
    Kong, F., Engler, C. R., and Soltes, E. (1992),Appl. Biochem. Biotechnol. 34/35, 23–35.Google Scholar
  9. 9.
    Grethlein, H. E., Allen, D. C., and Converse, A. O. (1984),Biotech. Bioeng. 26, 1498–1505.CrossRefGoogle Scholar
  10. 10.
    Grohmann, K., Torget, R., and Himmel, M. (1986),Biotechnol. Bioeng. Symp. 17, 135–151.Google Scholar
  11. 11.
    Torget, R., Werdene, P., Himmel, M., and Grohmann, K. (1990),Appl. Biochem. Biotechnol. 24/25, 115–126.Google Scholar
  12. 12.
    Torget, R., Walter, P., Himmel, M., and Grohmann, K. (1991),Appl. Biochem. Biotechnol. 28/29, 75–86.Google Scholar
  13. 13.
    Stanek, D. A. (1958),Tappi J. 41, 601–609.Google Scholar
  14. 14.
    Beck, M. J. (1986),Biotechnol. Bioeng. Symp. 17, 617–627.Google Scholar
  15. 15.
    Fein, J. E., Tallim, S. R., and Lawford, G. R. (1984),Can. J. Microbiol. 30, 682–690.CrossRefGoogle Scholar
  16. 16.
    Frazer, F. R. and McCaskey, T. A. (1989),Biomass 18, 31–42.CrossRefGoogle Scholar
  17. 17.
    Nishikawa, N. K., Sutcliffe, R., and Saddler, J. N. (1988),Appl. Microbiol. Biotechnol. 27, 549–552.Google Scholar
  18. 18.
    Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986),J. Ferment. Technol. 64, 567–570.CrossRefGoogle Scholar
  19. 19.
    Jefferies, T. W. (1981),Biotechnol. Bioeng. Symp. 11, 315–324.Google Scholar
  20. 20.
    Lynd, L. R. (1989),Adv. Biochem. Eng. Biotechnol. 38, 1–52.Google Scholar
  21. 21.
    Skoog, K. and Hahn-Hägerdal, B. (1988),Enzyme Microbiol. Technol. 10, 66–88.CrossRefGoogle Scholar
  22. 22.
    Prior, B. A., Kilian, S. G., and du Preez, J. C. (1989),Process Biochemistry 24, 21–32.Google Scholar
  23. 23.
    Timell, T. E. (1967),Wood Science and Technology 1, 45–70.CrossRefGoogle Scholar
  24. 24.
    Tran, A. V. and Chambers, R. P. (1986),Enzyme Microbiol. Technol. 8, 439–444.CrossRefGoogle Scholar
  25. 25.
    Parekh, S. R., Parekh, R. S., and Wayman, M. (1987),Process Biochemistry 22, 85–91.Google Scholar
  26. 26.
    du Preez, J. C., Bosch, M. and Prior, B. A. (1986),Enzyme Microb. Technol. 8, 360–364.CrossRefGoogle Scholar
  27. 27.
    Lee, Y. Y. and McCaskey, T. A. (1983),Tappi J. 66, 102–107.Google Scholar
  28. 28.
    van Zyl, C., Prior, B. A., and du Preez, J. C. (1988),Appl. Biochem. Biotechnol. 17, 357–369.CrossRefGoogle Scholar
  29. 29.
    Wilson, J. J., Nishikawa, N. N., Deschatelets, L., and Nguyen, Q. (1990), Vol. I and II. Final Report of DSS Contract File #051SZ.23283-8-6103. Alternative Energy Division; Energy, Mines and Resources Canada, Ottawa.Google Scholar
  30. 30.
    Björling, T. and Lindman, B. (1989),Enzyme Microbiol. Technol. 11, 240–246.CrossRefGoogle Scholar
  31. 31.
    Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990), inDevelopments in Industrial Microbiology, Pierce, G. E., ed., vol. 31, Elsevier, New York, pp. 21–30.Google Scholar
  32. 32.
    Ingram, L. O., Conway, T., and Alterthum, F. (1991), United States Patent 5,000,000.Google Scholar
  33. 33.
    Ingram, L. O. and Conway, T. (1988),Appl. Environ. Microbiol. 54, 397–404.Google Scholar
  34. 34.
    Alterthum, F. and Ingram, L. O. (1989),Appl. Environ. Microbiol. 55, 1943–1948.Google Scholar
  35. 35.
    Ingram, L. O., (1990), inEnergy from Biomass & Wastes XIV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 1105–1126.Google Scholar
  36. 36.
    Ohta, K., Alterthum, F., and Ingram, L. O. (1990),Appl. Environ. Microbiol. 56, 463–465.Google Scholar
  37. 37.
    Lawford, H. G. and Rousseau, J. D. (1991),Appl. Biochem. Biotechnol. 28/29, 221–236.Google Scholar
  38. 38.
    Lawford, H. G. and Rousseau, J. D. (1991), inEnergy from Biomass & Wastes XV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 583–622.Google Scholar
  39. 39.
    Lawford, H. G. and Rousseau, J. D. (1991),Biotechnol. Letts. 13, 191–196.CrossRefGoogle Scholar
  40. 40.
    Lawford, H. G. and Rousseau, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 185–204.CrossRefGoogle Scholar
  41. 41.
    Lawford, H. G. and Rousseau, J. D. (1992), inEnergy from Biomass & Wastes XVI, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL (in press).Google Scholar
  42. 42.
    Lawford, H. G. and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol., this vol.Google Scholar
  43. 43.
    Lawford, H. G. and Rousseau, J. D. (1992),Biotechnol. Letts. 14, 421–426.CrossRefGoogle Scholar
  44. 44.
    Zabriskie, D. W. and Arcuri, E. J. (1986),Enzyme Microb. Technol. 8, 706–717.CrossRefGoogle Scholar
  45. 45.
    Luria, S. E. and Delbruck, M. (1943),Genetics 28, 491–511.Google Scholar
  46. 46.
    Nicholls, D. G. (1982),Bioenergetics—an Introduction to the Chemiosmotic Theory, Academic, Toronto, pp. 56–58.Google Scholar
  47. 47.
    Postma, E., Verduyn, C., Scheffers, W. A., and van Dijken, J. P. (1989),Appl. Environ. Microbiol. 55, 468–477.Google Scholar
  48. 48.
    Pampulha, M. E. and Louriero, V. (1989),Biotechnol. Letts. 11, 269–274.CrossRefGoogle Scholar
  49. 49.
    Verduyn, C., Postma, E., Scheffers, A., and van Dijken, J. P. (1990),J. Gen. Microbiol. 136, 395–403.Google Scholar
  50. 50.
    Repaske, D. R. and Adler, J. (1981),J. Bacteriol. 145, 321–325.Google Scholar
  51. 51.
    Conway, E. J. and Downey, M. (1950),Biochem. J. 47, 347.Google Scholar
  52. 52.
    Mitchell, P. (1973),J. Bioenergetics 4, 63–91.CrossRefGoogle Scholar
  53. 53.
    Padan, E. D., Zilberstein, D., and Schuldiner, S. (1982),Biochim. Biophys. Acta. 650, 131–156.Google Scholar
  54. 54.
    Booth, I. R. (1985),Microbiol. Rev. 49, 359–378.Google Scholar
  55. 55.
    Verduyn, C., Postma, E., Scheffers, A., and van Dijken, J. P. (1990),J. Gen. Microbiol. 136, 405–412.Google Scholar
  56. 56.
    Pampulha, M. E. and Loureiro-Dias, M. C. (1989),Appl. Microbiol. Biotechnol. 31, 547–550.CrossRefGoogle Scholar
  57. 57.
    Padan, E., Zilberstein, D., and Schuldiner, S. (1981),Biochim. Biophys. Acta 650, 131–156.Google Scholar
  58. 58.
    Salmond, C. V., Kroll, R. G., and Booth, I. R. (1984),J. Gen. Microbiol. 130, 2845–2850.Google Scholar
  59. 59.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.Google Scholar
  60. 60.
    Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.CrossRefGoogle Scholar
  61. 61.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugan, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  62. 62.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugan, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 2810–2815.Google Scholar
  63. 63.
    Barbosa, M., de F. S., Beck, M. J., Fein, J. E., Potts, D., and Ingram, L. O. (1992),Appl. Environ. Microbiol. 58, 1382–1384.Google Scholar
  64. 64.
    Safi, B. F., Rouleau, D., Mayer, R. C., and Desrochers, M. (1986),Biotechnol. Bioeng. 28, 944–951.CrossRefGoogle Scholar
  65. 65.
    Mueller, J. C. (1970),Pulp and Paper Magazine Canada 72, 72–76.Google Scholar
  66. 66.
    Luli, G. W. and Strohl, W. R. (1990),Appl. Environ. Microbiol. 56, 1004–1011.Google Scholar
  67. 67.
    Booth, I. R. and Kroll, R. G. (1983),Biochem. Soc. Trans. 11, 70–73.Google Scholar
  68. 68.
    Smirnova, G. V. and Oktybr'skii, O. N. (1985),Microbiology (USSR) 54, 205–209.Google Scholar
  69. 69.
    Smirnova, G. V. and Oktyabr'skii, O. N. (1988),Microbiology (USSR) 57, 446–451.Google Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Hugh G. Lawford
    • 1
  • Joyce D. Rousseau
    • 1
  1. 1.Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations