Advertisement

Advances in Atmospheric Sciences

, Volume 22, Issue 2, pp 230–237 | Cite as

Physical experiments to investigate the effects of street bottom heating and inflow turbulence on urban street-canyon flow

  • Jae-Jin Kim
  • Jong-Jin Baik
Article
  • 288 Downloads

Abstract

The effects of street bottom heating and inflow turbulence on urban street-canyon flow are experimentally investigated using a circulating water channel. Three experiments are carried out for a street canyon with a street aspect ratio of 1. Results from each experiment with bottom heating or inflow turbulence are compared with those without bottom heating and appreciable inflow turbulence. It is demonstrated that street bottom heating or inflow turbulence increases the intensity of the canyon vortex. A possible explanation on how street bottom heating or inflow turbulence intensifies the canyon vortex is given from a fluid dynamical viewpoint.

Key words

urban street-canyon flow street bottom heating inflow turbulence circulating water channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baik, J.-J., and J.-J. Kim, 1999: A numerical study of flow and pollutant dispersion characteristics in urban street canyons.J. Appl. Meteor.,38, 1576–1589.CrossRefGoogle Scholar
  2. Baik, J.-J., R.-S. Park, H.-Y. Chun, and J.-J. Kim, 2000: A laboratory model of urban street-canyon flows.J. Appl. Meteor.,39, 1592–1600.CrossRefGoogle Scholar
  3. Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis.J. Appl. Meteor.,3, 396–409.CrossRefGoogle Scholar
  4. Brown, M. J., R. E. Lawson Jr., D. S. DeCroix, and R. L. Lee, 2000: Mean flow and turbulence measurements around a 2-D array of buildings in a wind tunnel.11th Conf. on the Applications of Air Pollution Meteorology with A &WMA, Long Beach, CA, Amer. Meteor. Soc., 35–40.Google Scholar
  5. DePaul, F. T., and C. M. Sheih, 1985: A tracer study of dispersion in an urban street canyon.Atmos. Environ.,19, 555–559.CrossRefGoogle Scholar
  6. DePaul, F. T., and C. M. Sheih, 1986: Measurements of wind velocities in a street canyon.Atmos. Environ.,20, 455–459.CrossRefGoogle Scholar
  7. Gayev, Y. A., and E. Savory, 1999: Influence of street obstructions on flow processes within urban canyons.Journal of Wind Engineering and Industrial Aerodynamics,82, 89–103.CrossRefGoogle Scholar
  8. Kim, J.-J., and J.-J. Baik, 1999: A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons.J. Appl. Meteor.,38, 1249–1261.CrossRefGoogle Scholar
  9. Kim, J.-J., and J.-J. Baik, 2001: Urban street-canyon flows with bottom heating.Atmos. Environ.,35, 3395–3404.CrossRefGoogle Scholar
  10. Lee, I. Y., and H. M. Park, 1994: Parameterization of the pollutant transport and dispersion in urban street canyons.Atmos. Environ.,28, 2343–2349.CrossRefGoogle Scholar
  11. Leriche, E., and S. Gavrilakis, 2000: Direct numerical simulation of the flow in a lid-driven cubical cavity.Physics of Fluids,12, 1363–1376.CrossRefGoogle Scholar
  12. Liu, H. Z., B. Liang, F. R. Zhu, B. Y. Zhang, and J. G. Sang, 2003: A laboratory model for the flow in urban street canyons induced by bottom heating.Adv. Atmos. Sci.,20, 554–564.CrossRefGoogle Scholar
  13. Meroney, R. N., M. Pavageau, S. Rafailidis, and M. Schatzmann, 1996: Study of line source characteristics for 2D physical modelling of pollutant dispersion in street canyons.Journal of Wind Engineering and Industrial Aerodynamics,62, 37–56.CrossRefGoogle Scholar
  14. Odell, G. M., and L. S. G. Kovasznay, 1971: A new type of water channel with density stratification.J. Fluid Mech.,50, 535–543.CrossRefGoogle Scholar
  15. Pan, F., and A. Acrivos, 1967: Steady flows in rectangular cavities.J. Fluid Mech.,28, 643–655.CrossRefGoogle Scholar
  16. Ramanan, N., and G. M. Homsy, 1994: Linear stability of lid-driven cavity flow.Physics of Fluids,6, 2690–2701.CrossRefGoogle Scholar
  17. Sini, J.-F., S. Anquetin, and P. G. Mestayer, 1996: Pollutant dispersion and thermal effects in urban street canyons.Atmos. Environ.,30, 2659–2677.CrossRefGoogle Scholar
  18. Tampieri, F., and J. C. R. Hunt, 1985: Two-dimensional stratified fluid flow over valleys: Linear theory and a laboratory investigation.Bound.-Layer Meteor.,32, 257–279.CrossRefGoogle Scholar
  19. Uehara, K., S. Murakami, S. Oikawa, and S. Wakamatsu, 2000: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons.Atmos. Environ.,34, 1553–1562.CrossRefGoogle Scholar
  20. Wedding, J. B., D. J. Lombardi, and J. E. Cermak, 1977: A wind tunnel study of gaseous pollutants in city street canyons.J. Air Pollut. Control Assoc.,27, 557–566.Google Scholar
  21. Zhang, Y. Q., A. H. Huber, S. P. S. Arya, and W. H. Snyder, 1993: Numerical simulation to determine the effects of incident wind shear and turbulence level on the flow around a building.Journal of Wind Engineering and Industrial Aerodynamics,46 &47, 129–134.CrossRefGoogle Scholar

Copyright information

© Advances in Atmospheric Sciences 2003

Authors and Affiliations

  • Jae-Jin Kim
    • 1
  • Jong-Jin Baik
    • 2
  1. 1.Climate Environment System Research CenterSeoul National UniversitySeoulKorea
  2. 2.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea

Personalised recommendations