Immunologic Research

, Volume 14, Issue 1, pp 34–57 | Cite as

Peptide binding to MHC class I molecules: Implications for antigenic peptide prediction

  • Kenneth C. Parker
  • Michael Shields
  • Marianne DiBrino
  • Andrew Brooks
  • John E. Coligan


The human mayor histocompatibility complex class I molecule HLA-A2 preferentially binds peptides that contain Leu at P2 and Val or Leu at the C terminus. The other amino acids in the peptide also contribute to binding positively or negatively. It is possible to estimate the binding stability of HLA-A2 complexes containing particular peptides by applying coefficients, deduced from a large amount of binding data, that quantify the relative contribution of each amino acid at each position. In this review, we describe the molecular basis for these coefficients and demonstrate that estimates of binding stability based on the coefficients are generally concordant with experimental measurements of binding affinities. Peptides that contained cysteine were predicted less well, possibly because of complications resulting from peptide dimerization and oxidation. Apparently, peptide binding affinity is largely controlled by the rate of dissociation of the β2-Microglobulin complex, whereas the rate of formation of the complex has less impact on peptide affinity. Although peptides that bind tightly to HLA-A2, including many antigenic peptides bind much more weakly. Therefore, a full understanding of why certain peptides are immunodominant will require further research.

Key Words

β2-Microglobulin Antigenic peptides Anchor residues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zemmour J, Parham P: HLA class I nucleotide sequences, 1992. Immunobiology 1993;187:70–101.PubMedGoogle Scholar
  2. 2.
    Barber LD, Parham P: Peptide binding to major histocompatibility complex molecules. Annu Rev Cell Biol 1993;9:163–206.PubMedGoogle Scholar
  3. 3.
    Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC: The foreign antigen-binding site and T-cell recognition regions of class I histocompatibility antigens. Nature 1987;329:512–518.PubMedGoogle Scholar
  4. 4.
    Falk K, Rötzschke O, Stevanovic S, Jung G, Rammensee H-G: Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991;351:290–296.PubMedGoogle Scholar
  5. 5.
    Jardetzky TS, Lane WS, Robinson RA, Madden DR, Wiley DC: Identification of self peptides bound to purified HLA-B27. Nature 1991; 353:326–329.PubMedGoogle Scholar
  6. 6.
    Madden DR, Gorga JC, Strominger JL, Wiley DC: The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 1991;353:321–325.PubMedGoogle Scholar
  7. 7.
    Madden DR, Gorga JC, Strominger JL, Wiley DC: The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell 1992;70:1035–1048.PubMedGoogle Scholar
  8. 8.
    Bouvier M, Wiley DC: Importance of peptide amino and carboxyl termini to the stability of MHC class I molecules. Science 1994;265:398–402.PubMedGoogle Scholar
  9. 9.
    Garrett TP, Saper MA, Bjorkman PJ, Strominger JL, Wiley DC: Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature 1989;342:692–696.PubMedGoogle Scholar
  10. 10.
    Saper MA, Bjorkman PJ, Wiley DC: Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 1991; 219:277–319.PubMedGoogle Scholar
  11. 11.
    Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ: The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 1986;44:959–968.PubMedGoogle Scholar
  12. 12.
    Boon T, Cerottini J-C, Van den Eynde B, Van der Bruggen P, Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994;12:337–365.PubMedGoogle Scholar
  13. 13.
    Houghton AN: Cancer antigens: Immune recognition of self and altered self. J Exp Med 1994;180:1–4.PubMedGoogle Scholar
  14. 14.
    Engelhard VH: Structure of peptides associated with class I and class II MHC molecules. Annu Rev Immunol 1994;12:181–207.PubMedGoogle Scholar
  15. 15.
    Jackson MR, Song ES, Yang Y, Peterson PA: Empty and peptide-containing conformers of class I major histocompatibility complex molecules expressed inDrosophila melanogaster cells. Proc Natl Acad Sci USA 1992;89:12117–12121.PubMedGoogle Scholar
  16. 16.
    Del Val M, Schlicht H-J, Volkmer H, Messerle M, Reddehase MJ, Koszinowski UH: Protection against lethal cytomegalovirus infection by a recombinant vaccine containing a single nonameric T-cell epitope. J Virol 1991;65:3641.PubMedGoogle Scholar
  17. 17.
    Schulz M, Zinkernagel RM, Hengartner H: Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci USA 1991;88:991.PubMedGoogle Scholar
  18. 18.
    Harty JT, Bevan MJ: CD8+ T cells specific for a single nonamer epitope ofListeria monocytogenes are protective in vivo. J Exp Med 1992; 175:1531–1538.PubMedGoogle Scholar
  19. 19.
    Rock KL, Fleischacker C, Gamble S: Peptide-priming of cytolytic T cell immunity in vivo using β2-microglobulin as an adjuvant. J Immunol 1993;150:1244–1252.PubMedGoogle Scholar
  20. 20.
    Boon T: Tumor antigens recognized by cytolytic T lymphocytes: Present perspectives for specific immunotherapy. Int J Cancer 1993;54:177–180.PubMedGoogle Scholar
  21. 21.
    Celis E, Tsai V, Crimi C, DeMars R, Wentworth PA, Chesnut RW, Grey HM, Sette A, Serra HM: Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci USA 1994;91:2105–2109.PubMedGoogle Scholar
  22. 22.
    Goldberg AL, Rock KL: Proteolysis, proteasomes and antigen presentation. Nature 1992;357:375–379.PubMedGoogle Scholar
  23. 23.
    Jackson MR, Peterson PA: Assembly and intracellular transport of MHC class I molecules. Annu Rev Cell Biol 1993;9:207–235.PubMedGoogle Scholar
  24. 24.
    Lévy F, Larsson R, Kvist S: Translocation of peptides through microsomal membranes is a rapid process and promotes assembly of HLA-B27 heavy chain and β2-microglobulin translated in vitro. J Cell Biol 1991; 115:959–970.PubMedGoogle Scholar
  25. 25.
    Neefjes JJ, Momburg F, Hämmerling GJ: Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 1993;261:769–771.PubMedGoogle Scholar
  26. 26.
    Androlewicz MJ, Anderson KS, Cresswell P: Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc Natl Acad Sci USA 1993; 90:9130–9134.PubMedGoogle Scholar
  27. 27.
    Momburg F, Roelse J, Howard JC, Butcher GW, Hämmerling GJ, Neefjes JJ: Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 1994; 367:648–651PubMedGoogle Scholar
  28. 28.
    Srivastava PK, Udono H, Blachere NE, Li Z: Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 1994;39:93–98.PubMedGoogle Scholar
  29. 29.
    Ehrich EW, Devaux B, Rock EP, Jorgensen JL, Davis MM, Chien Y: T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J Exp Med 1993;178:713–722.PubMedGoogle Scholar
  30. 30.
    Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL Jr: Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 1994;264:716–719.PubMedGoogle Scholar
  31. 31.
    Seth A, Stern LJ, Ottenhoff THM, Engel I, Owen MJ, Lamb JR, Klausner RD, Wiley DC: Binary and ternary complexes between T-cell receptor, class II MHC and superantigen in vitro. Nature 1994; 369:324–327.PubMedGoogle Scholar
  32. 32.
    Gammon MC, Bednarek MA, Biddison WE, Bondy SS, Hermes JD, Mark GE, Williamson AR, Zweerink HJ: Endogenous loading of HLA-A2 molecules with an analog of the influenza virus matrix protein-derived peptide and its inhibition by an exogenous peptide antagonist. J Immunol 1992;148:7–12.PubMedGoogle Scholar
  33. 33.
    De Magistris MT, Alexander J, Coggeshall M, Altman A, Gaeta FCA, Grey HM, Sette A: Antigen analog-major histocompatibility complexes act as antagonists of the T cell receptor. Cell 1992;68:625–634.PubMedGoogle Scholar
  34. 34.
    Gairin JE, Oldstone MBA: Design of high-affinity major histocompatibility complex-specific antagonist peptides that inhibit cytotoxic T-lymphocyte activity: Implications for control of viral disease. J Virol 1992;66:6755–6762.PubMedGoogle Scholar
  35. 35.
    Racioppi L, Ronchese F, Matis LA, Germain RN: Peptide-major histocompatibility complex class II complexes with mixed agonist/antagonist properties provide evidence for ligand-related differences in T cell receptor-dependent intracellular signaling. J Exp Med 1993;177:1047–1060.PubMedGoogle Scholar
  36. 36.
    Jameson SC, Carbone FR, Bevan MJ: Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J Exp Med 1993;177: 1541–1550.PubMedGoogle Scholar
  37. 37.
    Engelhard VH: Structure of peptides associated with MHC class I molecules. Curr Opin Immunol 1994;6: 13–23.PubMedGoogle Scholar
  38. 38.
    Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH: Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectroscopy. Science 1992;255:1261–1263.PubMedGoogle Scholar
  39. 39.
    Henderson RA, Michel H, Sakaguchi K, Shabanowitz J, Appella E, Hunt DF, Engelhard VH: HLA-A2.1-associated peptides from a mutant cell line: A second pathway of antigen presentation. Science 1992;255:1264–1266.PubMedGoogle Scholar
  40. 40.
    Huczko EL, Bodnar WM, Benjamin D, Sakaguchi K, Zhu NZ, Shabanowitz J, Henderson RA, Appella E, Hunt DF, Engelhard VH: Characteristics of endogenous peptides eluted from the class I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J Immunol 1993;151:2572–2587.PubMedGoogle Scholar
  41. 41.
    Corr M, Boyd LF, Frankel SR, Kozlowski S, Padlan EA, Margulies DH: Endogenous peptides of a soluble major histocompatibility complex class I molecule, H-2Ld: Sequence motif, quantitative binding, and molecular modeling of the complex. J Exp Med 1992;176:1681–1692.PubMedGoogle Scholar
  42. 42.
    DiBrino M, Parker KC, Shiloach J, Knierman M, Lukszo J, Turner RV, Biddison WE, Coligan JE: Endogenous peptides bound to HLA-A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. Proc Natl Acad Sci USA 1993; 90:1508–1512.PubMedGoogle Scholar
  43. 43.
    Van Bleek GM, Nathenson SG: Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 1990;348:213–216.PubMedGoogle Scholar
  44. 44.
    Elvin J, Cerundolo V, Elliott T, Townsend A: A quantitative assay of peptide-dependent class I assembly. Eur J Immunol 1991;21:2025–2031.PubMedGoogle Scholar
  45. 45.
    Parker KC, Bednarek MA, Hull LK, Utz U, Cunningham B, Zweerink HJ, Biddison WE, Coligan JE: Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol 1992;149:3580–3587.PubMedGoogle Scholar
  46. 46.
    Wettstein PJ, Van Bleek GM, Nathenson SG: Differential binding of a minor histocompatibility antigen peptide to H-2 class I molecules correlates with immune responsiveness. J Immunol 1993;150:2753–2760.PubMedGoogle Scholar
  47. 47.
    Fahnestock ML, Johnson JL, Feldman RMR, Tsomides TJ, Mayer J, Narhi LO, Bjorkman PJ: Effects of peptide length and composition on binding to an empty class I MHC heterodimer. Biochemistry 1994;33: 8149–8158.PubMedGoogle Scholar
  48. 48.
    Jameson SC, Bevan MJ: Dissection of major histocompatibility complex (MHC) and T cell receptor contact residues in a Kb-restricted ovalbumin peptide and an assessment of the predictive power of MHC-binding motifs, Eur J Immunol 1992;22: 2663–2667.PubMedGoogle Scholar
  49. 49.
    Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A: Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 1993;74:929–937.PubMedGoogle Scholar
  50. 50.
    Parker KC, Bednarek MA, Coligan JE: A scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994;152:163–175.PubMedGoogle Scholar
  51. 51.
    Boehncke W-H, Takeshita T, Pendleton CD, Houghten RA, Sadegh-Nasseri S, Racioppi L, Berzofsky JA, Germain RN: The importance of dominant negative effects of amino acid side chain substitution in peptide-MHC molecule interactions and T cell recognition. J Immunol 1993;150:331–341.PubMedGoogle Scholar
  52. 52.
    Winter CC, Carreno BM, Turner RV, Koenig S, Biddison WE: The 45 pocket of HLA-A2.1 plays a role in presentation of influenza virus matrix peptide and alloantigens. J Immunol 1991;146:3508–3512.PubMedGoogle Scholar
  53. 53.
    Guo H-C, Madden DR, Silver ML, Jardetzky TS, Gorga JC, Strominger JL, Wiley DC: Comparison of the P2 specificity pocket in three human histocompatibility antigens: HLA-A*6801, HLA-A*0201, and HLA-B*2705. Proc Natl Acad Sci USA 1993;90:8053–8057.PubMedGoogle Scholar
  54. 54.
    Fremont DH, Matsumura M, Stura EA, Peterson PA, Wilson IA: Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 1992;257:919–927.PubMedGoogle Scholar
  55. 55.
    Matsumura M, Fremont DH, Peterson PA, Wilson IA: Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 1992;257:927–934.PubMedGoogle Scholar
  56. 56.
    Saito Y, Peterson PA, Matsumura M: Quantitation of peptide anchor residue contributions to class I major histocompatibility complex molecule binding. J Biol Chem 1993; 268:21309–21317.PubMedGoogle Scholar
  57. 57.
    DiBrino M, Parker KC, Shiloach J, Turner RV, Biddison WE, Coligan JE: HLA-B14 is distinguished by the use of five anchor residues. J Biol Chem 1994;269:32426–32434.PubMedGoogle Scholar
  58. 58.
    DiBrino M, Parker KC, Shiloach J, Turner RV, Tsuchida T, Garfield M, Biddison WE, Coligan JE: Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. J Immunol 1994;152:620–631.PubMedGoogle Scholar
  59. 59.
    Kubo RT, Sette A, Grey HM, Appella E, Sakaguchi K, Zhu N-Z, Arnott D, Sherman N, Shabanowitz J, Michel H, Bodnar WM, Davis TA, Hunt DF: Definition of specific peptide motifs for four major HLA-A alleles. J Immunol 1994;152:3913–3924.PubMedGoogle Scholar
  60. 60.
    Joyce S, Nathenson SG: Methods to study peptides associated with MHC class I molecules. Curr Opin Immunol 1994;6:24–31.PubMedGoogle Scholar
  61. 61.
    Schumacher TNM, De Bruijn MLH, Vernie LN, Kast WM, Melief CJM, Neefjes JJ, Ploegh HL: Peptide selection by MHC class I molecules. Nature 1991;350:703–706.PubMedGoogle Scholar
  62. 62.
    Ljunggren H-G, Stam NJ, Öhlén C, Neefjes JJ, Höglund P, Heemels M-T, Bastin J, Schumacher TNM, Townsend A, Kärre K, Ploegh HL: Empty MHC class I molecules come out in the cold. Nature 1990;346: 476–480.PubMedGoogle Scholar
  63. 63.
    Olsen AC, Pedersen LO, Hansen AS, Nissen MH, Olsen M, Hansen PR, Holm A, Buus B: A quantitative assay to measure the interaction between immunogenic peptides and purified class I major histocompatibility complex molecules. Eur J Immunol 1994;24:385–392.PubMedGoogle Scholar
  64. 64.
    Matsumura M, Saito Y, Jackson MR, Song ES, Peterson PA: In vitro binding to soluble empty class I major histocompatibility complex molecules isolated from transfectedDrosophila melanogaster cells J Biol Chem 1992;267:23589–23595.PubMedGoogle Scholar
  65. 65.
    Madden DR, Garboczi DN, Wiley DC: The antigenic identity of peptide/MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2. Cell 1993;75:693–708.PubMedGoogle Scholar
  66. 66.
    Khilko SN, Corr M, Boyd LF, Lees A, Inman JK, Margulies DH: Direct detection of major histocompatibility complex class I binding to antigenic peptides using surface plasmon resonance: Peptide immobilization and characterization of binding specificity. J Biol Chem 1993; 268:15425–15434.PubMedGoogle Scholar
  67. 67.
    Chen BP, Parham P: Direct binding of influenza peptides to class I molecules. Nature 1989;337:743–745.PubMedGoogle Scholar
  68. 68.
    Schumacher TNM, Heemels M-T, Neefjes JJ, Kast WM, Melief CJM, Ploegh HL: Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell 1990;62:563–567.PubMedGoogle Scholar
  69. 69.
    Tsomides TJ, Walker BD, Eisen HN: An optimal viral peptide recognized by CD8+ T cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein. Proc Natl Acad Sci USA 1991;88:11276–11280.PubMedGoogle Scholar
  70. 70.
    Ojcius DM, Abastado J-P, Casrouge A, Mottez E, Cabanie L, Kourilsky P: Dissociation of the peptide-MHC class I complex limits the binding rate of exogenous peptide. J Immunol 1993;151:6020–6026.PubMedGoogle Scholar
  71. 71.
    Deres K, Schumacher TNM, Wiesmüller K-H, Stevanovic S, Greiner G, Jung G, Ploegh HL: Preferred size of peptides that bind to H-2 Kb is sequence dependent. Eur J Immunol 1992;22:1603–1608.PubMedGoogle Scholar
  72. 72.
    Tsomides TJ, Eisen HN: Stoichiometric labeling of peptides by iodination on tyrosyl and histidyl residues. Anal Biochem 1993;210:129–135.PubMedGoogle Scholar
  73. 73.
    Elvin J, Potter C, Elliott T, cerundolo V, Townsend A: A method to quantify binding of unlabeled peptides to class I MHC molecules and detect their allele specificity. J Immunol Methods 1993;158:161–171.PubMedGoogle Scholar
  74. 74.
    Elliott T, Cerundolo V, Elvin J, Townsend A: Peptide-induced conformational change of the class I heavy chain. Nature 1991;351:402–406.PubMedGoogle Scholar
  75. 75.
    Zeh HJ, Leder GH, Lotze MT, Salter RD, Tector M, Stuber G, Modrow S, Storkus WJ: Flow-cytometric determination of peptide-class I complex formation: Identification of p53 peptides that bind to HLA-A2. Hum Immunol 1994;39:79–86.PubMedGoogle Scholar
  76. 76.
    Tanigaki N, Fruci D, Chersi A, Butler RH: Unfolded HLA class I alpha chains and their use in an assay of HLA class-I peptide binding. Hum Immunol 1993;36:119–127.PubMedGoogle Scholar
  77. 77.
    Parker KC, Carreno BM, Sestak L, Utz U, Biddison WE, Coligan JE: Peptide binding to HLA-A2 and HLA-B27 isolated fromEscherichia coli: Reconstitution of HLA-A2 and HLA-B27 heavy β2-microglobulin complexes requires specific peptides. J Biol Chem 1992;267: 5451–5459.PubMedGoogle Scholar
  78. 78.
    Garboczi DN, Hung DT, Wiley DC: HLA-A2 peptide complexes: Refolding and crystallization of molecules expressed inEscherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci USA 1992;89:3429–3433.PubMedGoogle Scholar
  79. 79.
    Silver ML, Guo H-C, Strominger JL, Wiley DC: Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature 1992;360:367–369.PubMedGoogle Scholar
  80. 80.
    Zhang W, Young ACM, Imarai M, Nathenson SG, Sacchettini JC: Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: Implications for peptide binding and T-cell receptor recognition. Proc Natl Acad Sci USA 1992; 89:8403–8407.PubMedGoogle Scholar
  81. 81.
    Young ACM, Zhang W, Sacchettini JC, Nathenson SG: The three-dimensional strucutre of H-2Db at 2.4 Å resolution: Implications for antigen-determinant selection. Cell 1994;76:39–50.PubMedGoogle Scholar
  82. 82.
    Parker KC, DiBrino M, Hull L, Coligan JE: The β2-microglobulin dissociation rate is an accurate measure of the stability of MHC class I heterotrimers and depends on which peptide is bound. J Immunol 1992; 149:1896–1904.PubMedGoogle Scholar
  83. 83.
    Elliott T: How do peptides associate with MHC class I molecules. Immunol Today 1991;12:386–388.PubMedGoogle Scholar
  84. 84.
    Nijman HW, Houbiers JGA, Vierboom MPM, Van der Burg SH, Drijhout JW, D’Amaro J, Kenemans P, Melief CJM, Kast WM: Identification of peptide sequences that potentially trigger HLA-A2.1-restricted cytotoxic T lymphocytes. Eur J Immunol 1993;23:1215–1219.PubMedGoogle Scholar
  85. 85.
    Parker KC, Biddison WE, Coligan JE: Pocket mutations of HLA-B27 show that anchor residues act cumulatively to stabilize peptide binding. Biochemistry 1994;33:7736–7743.PubMedGoogle Scholar
  86. 86.
    Harris PE, Colovai A, Liu Z, Favera RD, Suciu-Foca N: Naturally processed HLA class I bound peptides from c-myc-transfected cells reveal allele-specific motifs. J Immunol 1993;151:5966–5974.PubMedGoogle Scholar
  87. 87.
    Kast WM, Brandt RMP, Sidney J, Drijfhout J-W, Kubo RT, Grey HM, Melief CJM, Sette A: Role of HLA-A motifs in identification of potential CTL epitopes in human papillo-mavirus type 16 E6 and E7 proteins. J Immunol 1994;152:3904–3912.PubMedGoogle Scholar
  88. 88.
    Connan F, Hlavac F, Hoebeke J, Guillet J-G, Choppin J: A simple assay for detection of peptides promoting the assembly of HLA class I molecules. Eur J Immunol 1994;24: 777–780.PubMedGoogle Scholar
  89. 89.
    Stuber G, Leder GH, Storkus WJ, Lotze MT, Modrow S, Székely L, Wolf H, Klein E, Kärre K, Klein G: Identification of wild-type and mutant p53 peptides binding to HLA-A2 assessed by a peptide loading-deficient cell line assay and a novel major histocompatibility complex class I peptide binding assay. Eur J Immunol 1994;24:765–768.PubMedGoogle Scholar
  90. 90.
    Nijman HW, Van der Burg SH, Vierboom MPM, Houbiers JGA, Kast WM, Melief CJM: p53, a potential target for tumor-directed T cells. Immunol Lett 1994;40:171–178.PubMedGoogle Scholar
  91. 91.
    Shimojo N, Maloy WL, Anderson RW, Biddison WE, Coligan JE: Specificity of peptide binding by the HLA-A2.1 molecule. J Immunol 1989;143:2939–2947.PubMedGoogle Scholar
  92. 92.
    Carreno BM, Anderson RW, Coligan JE, Biddison WE: HLA-B37 and HLA-A2.1 molecules bind largely nonoverlapping sets of peptides. Proc Natl Acad Sci USA 1990;87:3420–3424.PubMedGoogle Scholar
  93. 93.
    Choppin J, Martinon F, Connan F, Pauchard M, Gomard E, Levy J-P: HLA-binding regions of HIV-1 proteins II. A systematic study of viral proteins. J Immunol 1991;147:575–583.PubMedGoogle Scholar
  94. 94.
    Choppin J, Martinon F, Connan F, Gomard E, Levy J-P: HLA-binding regions of HIV-1 proteins I. Detection of seven HLA binding regions in the HIV-1 proteins. J Immunol 1991;147:569–574.PubMedGoogle Scholar
  95. 95.
    Tussey LG, Frelinger JA: Detergent enhances binding of a secreted HLA-A2 molecule to solid phase peptides. Hum Immunol 1991;32: 183–193.PubMedGoogle Scholar
  96. 96.
    Sette A, Vitiello A, Farness P, Furze J, Sidney J, Claverie JM, Grey HM, Chesnut R: Random association between the peptide repertoire of A2.1 class I and several different DR class II molecules. J Immunol 1991; 147:3893–3900.PubMedGoogle Scholar
  97. 97.
    Choppin J, Guillet J-G, Lévy J-P: HLA class I binding regions of HIV-1 proteins. Crit Rev Immunol 1992; 12:1–16.PubMedGoogle Scholar
  98. 98.
    Chen Y, Sidney J, Southwood S, Cox AL, Sakaguchi K, Henderson RA, Appella E, Hunt DF, Sette A, Engelhard VH: Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. J Immunol 1994;152:2874–2881.PubMedGoogle Scholar
  99. 99.
    Dadaglio G, Leroux A, Langlade-Demoyen P, Bahraoui EM, Traincard F, Fisher R, Plata F: Epitope recognition of conserved HIV envelope sequences by human cytotoxic T lymphocytes. J Immunol 1991;147:2302–2309.PubMedGoogle Scholar
  100. 100.
    Schmidt C, Burrows SR, Sculley TB, Moss DJ, Misko IS: Nonresponsiveness to an immunodominant Epstein-Barr virus-encoded cytotoxic T-lymphocyte epitope in nuclear antigen 3A: Implications for vaccine strategies. Proc Natl Acad Sci USA 1991;88:9478–9482.PubMedGoogle Scholar
  101. 101.
    Nixon DF, Broliden K, Ogg G, Broliden P-A: Cellular and humoral antigenic epitopes in HIV and SIV. Immunology 1992;76:515–534.PubMedGoogle Scholar
  102. 102.
    Wölfel T, Van Pel A, Brichard V, Schneider J, Seliger B, Meyer zum Büschenfelde K-H, Boon T: Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 1994;24: 759–764.PubMedGoogle Scholar
  103. 103.
    Carbone FR, Moore MW, Sheil JM, Bevan MJ: Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 1988;167:1767–1779.PubMedGoogle Scholar
  104. 104.
    Carbone FR, Bevan MJ: Induction of ovalbumin-specific cytotoxic T cells by in vivo peptide immunization. J Exp Med 1989;169:603–612.PubMedGoogle Scholar
  105. 105.
    Falk K, Rötzschke O, Takiguchi M, Grahovac B, Gnau V, Stevanovic S, Jung G, Rammensee H-G: Peptide motifs of HLA-A1,-A11,-A31, and-A33 molecules. Immunogenetics 1994;40:238–241.PubMedGoogle Scholar
  106. 106.
    Karp DR, Teletski CL, Jaraquemada D, Maloy WL, Coligan JE, Long EO: Structural requirements for pairing of alpha and beta HLA-DR and HLA-DP molecules. J Exp Med 1990;171:615–628.PubMedGoogle Scholar
  107. 107.
    Zhang Q-J, Gavioli R, Klein G, Masucci MG: An HLA-A11-specific motif in nonamer peptides derived from viral and cellular proteins. Proc Natl Acad Sci USA 1993;90:2217–2221.PubMedGoogle Scholar
  108. 108.
    Guo H-C, Jardetzky TS, Garrett TPJ, Lane WS, Strominger JL, Wiley DC: Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature 1992;360:364–366.PubMedGoogle Scholar
  109. 109.
    Falk K, Rötzschke O, Grahovac B, Schendel D, Stevanovic S, Jung G, Rammensee H-G: Peptide motifs of HLA-B35 and-B37 molecules. Immunogenetics 1993;38:161–162.PubMedGoogle Scholar
  110. 110.
    Hill AVS, Elvin J, Willis AC, Aidoo M, Allsopp CEM, Gotch FM, Gao XM, Takiguchi M, Greenwood BM, Townsend ARM, McMichael AJ, Whittle HC: Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 1992;360: 434–439.PubMedGoogle Scholar
  111. 111.
    Falk K, Rötzschke O, Grahovac B, Schendel D, Stevanovic S, Gnau V, Jung G, Strominger JL, Rammensee H-G: Allele-specific peptide ligand motifs of HLA-C molecules. Proc Natl Acad Sci USA 1993;90:12005–12009.PubMedGoogle Scholar
  112. 112.
    Corr M, Boyd LF, Padlan EA, Margulies DH: H-2Dd exploits a four residue peptide binding motif. J Exp Med 1993;178:1877–1892.PubMedGoogle Scholar
  113. 113.
    Romero P, Corradin G, Luescher IF, Maryanski JL: H-2Kd-restricted antigenic peptides share a simple binding motif. J Exp Med 1991;174:603–612.PubMedGoogle Scholar
  114. 114.
    Cossins J, Gould KG, Smith M, Driscoll P, Brownlee GG: Precise prediction of a Kk-restricted cytotoxic T cell epitope in the NS1 protein of influenza virus using an MHC allele-specific motif. Virology 1993;193:289–295.PubMedGoogle Scholar
  115. 115.
    Rötzschke O, Falk K, Stevanovic S, Grahovac B, Soloski MJ, Jung G, Rammensee H-G: Qa-2 molecules are peptide receptors of higher stringency than ordinary class I molecules. Nature 1993;361:642–644.PubMedGoogle Scholar
  116. 116.
    Joyce S, Tabaczewski P, Angeletti RH, Nathenson SG, Stroynowski I: A nonpolymorphic major histocompatibility complex class Ib molecule binds a large array of diverse self-peptides. J Exp Med 1994;179:579–588.PubMedGoogle Scholar
  117. 117.
    Nayersina R, Fowler P, Guilhot S, Missale G, Cerny A, Schlicht H-J, Vitiello A, Chesnut R, Person JL, Redeker AG, Chisari FV: HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol 1993;150:4659–4671.PubMedGoogle Scholar
  118. 118.
    Utz U, Koenig S, Coligan JE, Biddison WE: Presentation of three different viral peptides, HTLV-1 tax, HCMV gB, and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. J Immunol 1992; 149:214–221.PubMedGoogle Scholar
  119. 119.
    Bertoletti A, Chisari FV, Penna A, Guilhot S, Galati L, Missale G, Fowler P, Schlicht H-J, Vitiello A, Chesnut RC, Fiaccadori F, Ferrari C: Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis B virus nucleocapsid protein. J Virol 1993;67:2376–2380.PubMedGoogle Scholar
  120. 120.
    Gotch F, Rothbard J, Howland K, Townsend A, McMichael A: Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2. Nature 1987;326:881–882.PubMedGoogle Scholar
  121. 121.
    Bednarek MA, Sauma SY, Gammon MC, Porter G, Tamhankar S, Williamson AR, Zweerink HJ: The minimum peptide epitope from the influenza virus matrix protein: Extra and intracellular loading of HLA-A2. J Immunol 1991;147:4047–4053.PubMedGoogle Scholar
  122. 122.
    Henderson RA, Cox AL, Sakaguchi K, Appella E, Shabanowitz J, Hunt DF, Engelhard VH: Direct identification of an endogenous peptide recognized by multiple HLA-A2. 1-specific cytotoxic T cells. Proc Natl Acad Sci USA 1993;90:10275–10279.PubMedGoogle Scholar
  123. 123.
    Lee SP, Thomas WA, Murray RJ, Khanim F, Kaur S, Young LS, Rowe M, Kurilla M, Rickinson AB: HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 1993; 67:7428–7435.PubMedGoogle Scholar
  124. 124.
    Robbins PA, Lettice LA, Rota P, Santos-Aguado J, Rothbard J, McMichael AJ, Strominger JL: Comparison between two peptide epitopes presented to cytotoxic T lymphocytes by HLA-A2: Evidence for discrete locations within HLA-A2. J Immunol 1989;143:4098–4103.PubMedGoogle Scholar
  125. 125.
    Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, Yannelli RJ, Adema GJ, Miki T, Rosenberg SA: Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 1994;91:6458–6462.PubMedGoogle Scholar
  126. 126.
    Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA: Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994;180: 347–352.PubMedGoogle Scholar
  127. 127.
    Tsuchida T, Parker KC, Turner RV, McFarland HF, Coligan JE, Biddison WE: Autoreactive CD8+ T cell responses to human myelin protein-derived peptides. Proc Natl Acad Sci USA 1994;91: 10859–10863.PubMedGoogle Scholar
  128. 128.
    Tarpey I, Stacey S, Hickling J, Birley HDL, Renton A, McIndoe A, Davies DH: Human cytotoxic T lymphocytes stimulated by endogenously processed human papillo-mavirus type 11 E7 recognize a peptide containing a HLA-A2 (A*0201) motif. Immunology 1994;81:222–227.PubMedGoogle Scholar
  129. 129.
    Baggi F, Mantegazza R, Vincent A, Newsom-Davis J: HLA-A2-restricted T-cell line recognizing an epitope of the human acetylcholine receptor. Ann NY Acad Sci 1993; 681:276–279.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Kenneth C. Parker
    • 1
  • Michael Shields
    • 1
  • Marianne DiBrino
    • 1
  • Andrew Brooks
    • 1
  • John E. Coligan
    • 1
  1. 1.Laboratory of Molecular Structure, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthRockvilleUSA

Personalised recommendations