Biological Trace Element Research

, Volume 58, Issue 3, pp 197–208 | Cite as

Changes in certain hematological and physiological variables following single gallium arsenide exposure in rats

  • Swaran J. S. Flora
  • Shashi N. Dube
  • Rajagopalan Vijayaraghavan
  • Satish C. Pant
Original Articles


Gallium arsenide (GaAs), a group III-VA intermetallic semiconductor, possesses superior electronic and optical properties and has a wide application in electronic industry. Exposure to GaAs in the semiconductor industries could be a possible occupational risk. The aim of the present study was to determine the dose-dependent effect of single oral exposure to GaAs (500, 1000, or 2000 mg/kg) on some biochemical variables in heme synthesis pathway and few selected physiological variables at d 1, 7, and 15 following administration. The results indicate that GaAs produced a significant effect on the activity of δ-aminolevulinic acid dehydratase (ALAD) in blood and heart (particularly at d 7) following exposure to 2000 mg/kg, whereas urinary δ-aminolevulinic acid (ALA) excretion was elevated only at d 7. No marked influence of GaAs on blood hemoglobin, zinc protoporphyrin, and packed cell volume was noticed. Blood glutathione (GSH) was significantly reduced at d 7, but remained unchanged at two other time intervals. On the other hand, heart GSH contents remained uninfluenced on GaAs exposure. Most of the physiological variables, viz. blood pressure, heart and respiration rate, and twitch response, remained unchanged, except for some minor alterations observed at d 7 and 15 following exposure to GaAs at a dose of 2000 mg/kg. Blood gallium concentration was not detectable in normal animals and rats exposed to 500 mg/kg GaAs. Blood arsenic concentration was, however, detectable even at the a lower dose level and increased in a dose-dependent manner. All these changes showed a recovery pattern at d 21, indicating that the alterations are reversible.

Index Entries

Gallium arsenide δ-aminolevulinic acid dehydratase zinc protoporphyrin blood pressure respiration arsenic level rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Robinson,Science 219, 275 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    T. M. Briggs and T. W. Owens, Industrial hygiene chracterization of the photovoltaic solar. Industry NIOSH Technical Report. DHEW NIOSH, Publication No. 80-112, US Department of Health Education and Welfare, Cincinnati, OH.Google Scholar
  3. 3.
    D. R. Webb, I. G. Sipes, and D. E. Carter,Toxicol. Appl. Pharmacol. 76, 96 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    H. C. Dudley and M. D. Levine,J. Pharmacol. Exp. Ther. 95, 487 (1994).Google Scholar
  5. 5.
    H. C. Dudley, K. R. Hency, and B. F. Lindsley,J. Pharmacol. Expt Ther. 98 409 (1950).Google Scholar
  6. 6.
    D. R. Webb, D. E. Wilson and D. E. Carter,Toxicol. Appl. Pharmacol. 82, 405 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    D. R. Webb, S. E. Wilson and D. E. Carter,Ind. Byg. Assoc. J. 48, 660 (1987).Google Scholar
  8. 8.
    P. L. Goering, R. R. Maronpot and B. A. Fowler,Toxicol. Appl. Pharmacol. 92, 179 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    S. J. S. Flora and S. Das Gupta,J. Appl. Toxicol. 12, 333 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    E. E. Sikorski, J. A. McCay, K. L. White, S. G. Bradley and A. E. Munson,Fund Appl. Toxicol. 13, 843 (1989).CrossRefGoogle Scholar
  11. 11.
    L. A. Burns, E. E. Sikorski, J. J. Saady, and A. E. Munson,Toxicol. Appl. Pharmacol. 110, 157 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    S. J. S. Flora, S. N. Dube, S. C. Pant and A. S. Sachan,Ind. Health. 32, 247 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    S. J. S. Flora,Int. Hepatology Commun. 5, 97–103 (1996).CrossRefGoogle Scholar
  14. 14.
    A. Berlin and K. H. Schaller, Z. Klin,Chem. Klin. Biochem. 12, 339 (1974).Google Scholar
  15. 15.
    J. R. Davis, R. H. Abrahams, W. I. Fishbein and E. A. Fabrega,Arch. Environ. Health 17, 164 (1968).PubMedGoogle Scholar
  16. 16.
    P. Grandjean,Br. J. Ind. Med. 30, 52 (1979).Google Scholar
  17. 17.
    J. W. Clegg and E. J. King,Br. Med. J. 2, 329 (1942).CrossRefGoogle Scholar
  18. 18.
    C. A. Keele and E. Neil, eds.,Samson's Wright Applied Physiology, 2nd ed. Oxford Medical Publication, ELBS and Oxford University Press, p. 12 (1966).Google Scholar
  19. 19.
    G. L. Ellman, Tissue sulphydryl groups,Arch. Biochemistry & Biophysics 82, 70–77 (1959).CrossRefGoogle Scholar
  20. 20.
    P. Mushak, K. Dessauer and E. L. Walls,Env. Health Perspect. 19, 5–10 (1977).CrossRefGoogle Scholar
  21. 21.
    S. N. Dube, P. Kumar, D. Kumar and S. Das Gupta,Arch. Int. Pharmacodyn. 321, 112 (1993).PubMedGoogle Scholar
  22. 22.
    W. Victery,Environ. Health Perspect. 78, 71 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    S. N. Dube, A. K. Ghosh, K. Jeevarathinam, D. Kumar, S. Das Dupta, B. P. Pant, B. S. Batra and D. K. Jaiswal,Jpn. J. Pharmacol. 41, 267 (1936).CrossRefGoogle Scholar
  24. 24.
    E. K. Silbergeld and B. A. Fowler,Ann. NY Acad. Sci. 514, 1 (1933).Google Scholar
  25. 25.
    J. S. Wood and B. A. Fowler,Exp. Mol. Pathol. 36, 306 (1932).CrossRefGoogle Scholar
  26. 26.
    J. S. Wood and B. A. Fowler,Toxicol. Appl. Pharmacol. 43, 361 (1973).CrossRefGoogle Scholar
  27. 27.
    G. Martinez, M. Cebrian, G. Chemorro and P. Jange,Proc. Western Pharmacol. Soc. 26, 171 (1983).Google Scholar
  28. 28.
    J. S. Sheehara, M. G. Gore, A. G. Chaudhry and P. M. Jordon,Eur. J. Biochem. 114, 263 (1981).CrossRefGoogle Scholar
  29. 29.
    W. E. Blumberg, J. Eisinger, A. A. Lamola and D. M. Zuckerman,J. Lab. Clin. Med. 39, 712 (1977).Google Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Swaran J. S. Flora
    • 1
  • Shashi N. Dube
    • 1
  • Rajagopalan Vijayaraghavan
    • 1
  • Satish C. Pant
    • 1
  1. 1.Division of Pharmacology and ToxicologyDefense Research & Development EstablishmentGwaliorIndia

Personalised recommendations