Biological Trace Element Research

, Volume 21, Issue 1, pp 421–429 | Cite as

Mechanisms of arsenic-induced cell transformation

  • J. Carl Barrett
  • Patricia W. Lamb
  • T. C. Wang
  • Chang Te Lee
Section 6 Mechanisms of Carcinogenesis

Abstract

Arsenic is a well-established carcinogen in humans, but there is little evidence for its carcinogenicity in animals and it is inactive as an initiator or tumor promoter in two-stage models of carcinogenicity in mice. Studies with cells in culture have provided some possible mechanisms by which arsenic and arsenical compounds may exert a carcinogenic activity. Sodium arsenite and sodium arsenate were observed to induce morphological transformation of Syrian hamster embryo cells in a dose-dependent manner. The trivalent sodium arsenite was greater than tenfold more potent than the pentavalent sodium arsenate. The compounds also exhibited toxicity; however, transformation was observed at nontoxic as well as toxic doses. At low doses, enhanced colony forming efficiency of the cells was observed. To understand the mechanism of arsenic-induced transformation, the genetic effects of the two arsenicals were examined over the same doses that induced transformation. No arsenic-induced gene mutations were detected at two genetic loci. However, cell transformation and cytogenetic effects, including endoreduplication, chromosome aberrations, and sister chromatid exchanges, were induced by the arsenicals with similar dose responses. These results support a possible role for chromosomal changes in arsenic-induced transformation. The two arsenic salts also induced another form of mutation-gene amplification. Both sodium arsenite and sodium arsenate induced a high frequency of methotrexate-resistant 3T6 cells, which were shown to have amplified copies of the dihydrofolate reductase gene. The ability of arsenic to induce gene amplification may relate to its carcinogenic effects in humans since amplification of oncogenes is observed in many human tumors. Epidemiological studies suggest that arsenic acts late in the carcinogenic process in humans and oncogene amplification correlates with the progression of tumors. These observations lead us to propose the hypothesis that arsenic acts as a tumor progressor, rather than a tumor initiator or tumor promoter. Arsenic-induced chromosome aberrations or gene amplifications may play a role in tumor progression.

Index Entries

Cell transformation arsenic-induced mechanisms of cell transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IARC Monograph on Evaluation of Carcinogenic Risk to Humans 23, 1980, p. 37.Google Scholar
  2. 2.
    IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Humans Suppl. 4, 1982, p. 50.Google Scholar
  3. 3.
    A. Leonard and R. R. Lauwerys,Mutat. Res. 75, 49 (1980).PubMedGoogle Scholar
  4. 4.
    N. Ishinishi, A. Yamamoto, A. Hisanga, and T. Inamasu,Cancer Lett. 21, 141 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Rudnay and M. Borzsonyi,Magyar Onkologia 25, 73 (1981).Google Scholar
  6. 6.
    G. Pershagen, G. Nordberg, and N. Bjorklund,Environ. Res. 34, 227 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    J. A. DiPaolo and B. C. Casto,Cancer Res. 30, 1008 (1979).Google Scholar
  8. 8.
    T. C. Lee, M. Oshimura, and J. C. Barrett,Carcinogenesis 6, 1421, (1985). figures © AAAS.PubMedCrossRefGoogle Scholar
  9. 9.
    T. C. Lee, N. Tanaka, P. W. Lamb, T. M. Gilmer, and J. C. Barrett,Science 241, 79–81 (1988), figures © AAAS.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang, Q. and J. C. Barrett,Toxic. in Vitro. Toxic. in Vitro. 2: 303 (1988).Google Scholar
  11. 11.
    S. A. Lerman, T. W. Clarkson, and R. J. Gerson,Chem. Biol. Interactions 45, 401 (1983).CrossRefGoogle Scholar
  12. 12.
    M. Vahter and E. Marafante,Chem. Biol. Interactions 47, 29 (1983).CrossRefGoogle Scholar
  13. 13.
    T. G. Rossman, D. Stone, M. Molina, and W. Troll,Environ. Mut. 2, 371 (1980).CrossRefGoogle Scholar
  14. 14.
    L. L. Deaven and A. E. Nock,J. Cell. Biol. 83, 159a (1979).CrossRefGoogle Scholar
  15. 15.
    J. Petres, D. Baron, and M. Hagedon,Environ. Hlth. Perspect. 19, 223 (1977).CrossRefGoogle Scholar
  16. 16.
    M. L. Larramendy, N. C. Popescu, and J. A. DiPaolo,Environ. Mut. 3, 597 (1981).CrossRefGoogle Scholar
  17. 17.
    K. Nakamuro and Y. Sayato,Mutat. Res. 88, 73 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    G. R. Paton and A. C. Allison,Mutat. Res. 16, 332 (1972).PubMedGoogle Scholar
  19. 19.
    B. Wan, R. T. Christian, and S. W. Soukup,Environ. Mut. 4, 493 (1982).CrossRefGoogle Scholar
  20. 20.
    T. D. Tlsty, P. C. Brown and R. T. Schimke,Mol. Cell Biol. 4, 1050 (1984).PubMedGoogle Scholar
  21. 21.
    P. C. Brown, T. D. Tlsty, and R. T. Schimke,Mol. Cell Biol. 3, 1097 (1983).PubMedGoogle Scholar
  22. 22.
    R. T. Schimke,Cell 37, 705 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    A. B. Hill and R. T. Schimke,Cancer Res. 45, 5050 (1985).PubMedGoogle Scholar
  24. 24.
    A. Varshavsky,Proc. Natl. Acad. Sci. 78, 3673 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    R. K. Boutwell,J. Agric. Food Chem. 11, 381 (1963).CrossRefGoogle Scholar
  26. 26.
    C. Baroni, G. J. van Esch, and V. Saffiotti,Arch. Environ. Health 7, 668 (1963).PubMedGoogle Scholar
  27. 27.
    C. C. Brown and K. Chu,J. Natl. Cancer Inst. 70, 455 (1983).PubMedGoogle Scholar
  28. 28.
    D. L. George,Cancer Surveys 3, 497 (1984).Google Scholar
  29. 29.
    M. Schwab et al.,Proc. Natl. Acad. Sci. 81, 4940 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    G. M. Brodeur, R. C. Seeger, M. Schwab, H. E. Varmus, and J. M. Bishop,Science 224, 1121 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    J. C. Barrett,Carcinogenesis, vol. 8, M. J. Mass et al., eds., Raven, NY, 1985, p. 423.Google Scholar
  32. 32.
    H. Hennings et al.,Nature 304, 67 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    J. F. O’Connell, A. J. P. Klein-Szanto, D. M. DiGiovanni, J. W. Fries, and T. J. Slaga,Cancer Res. 46, 2863 (1986).PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • J. Carl Barrett
    • 1
  • Patricia W. Lamb
    • 1
  • T. C. Wang
    • 1
  • Chang Te Lee
    • 1
  1. 1.Laboratory of Molecular CarcinogenesisNational Institute of Environmental Health SciencesResearch Triangle Park

Personalised recommendations