Israel Journal of Mathematics

, Volume 144, Issue 2, pp 211–219

An optimal theorem for the spherical maximal operator on the Heisenberg group

Article

Abstract

Let\(\mathbb{I}^n = \mathbb{C}^n \times \mathbb{R}\) be the Heisenberg group and μr be the normalized surface measure on the sphere of radiusr in ℂn. Let\(Mf = \sup _{r > 0} \left| {f * \mu _r } \right|\). We prove an optimalLp-boundedness result for the spherical maximal functionMf, namely we prove thatM is bounded onLp(In) if and only ifp>2n/2n−1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Mueller and A. Seeger,Singular spherical maximal operators on a class of two step nilpotent Lie groups, Israel Journal of Mathematics141 (2004), 315–340.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Nevo and S. Thangavelu,Pointwise ergodic theorems for radial averages on the Heisenberg group, Advances in Mathematics127 (1997), 307–334.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Stein and S. Wainger,Problems in harmonic analysis related to curvature, Bulletin of the American Mathematical Society84 (1978), 1239–1295.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Szego,Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Providence, RI, 1967.Google Scholar
  5. [5]
    S. Thangavelu,Lectures on Hermite and Laguerre Expansions, Mathematical Notes No. 42, Princeton University Press, Princeton, 1993.MATHGoogle Scholar
  6. [6]
    S. Thangavelu,Harmonic Analysis on the Heisenberg Group, Progress in Mathematics 159, Birkhäuser, Boston, 1998.MATHGoogle Scholar
  7. [7]
    S. Thangavelu,Local ergodic theorems for K-spherical averages on the Heisenberg group, Mathematische Zeitschrift234 (2000), 291–312.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  2. 2.Stat-Math DivisionIndian Statistical InstituteBangaloreIndia

Personalised recommendations