Biological Trace Element Research

, Volume 5, Issue 3, pp 149–163 | Cite as

Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry

  • P. Scherer
  • H. Lippert
  • G. Wolff
Original Articles


The elemental composition of 10 methanogenic species was determined by inductively coupled plasma emission spectrometry and by a C-H-N-analyzer. The 10 species were representative of all three orders of the methanogens and were cultivated under defined conditions. Special emphasis was given toMethanosarcina barkeri, represented by 5 strains and cultivated on various substrates. The following elements with the lowest and highest values in parentheses were determined: C (37–44%, w/w), H (5.5–6.5%), N (9.5–12,8%); Na (0.3–4.0%), K (0.13–5.0%), S (0.56–1.2%), P (0.5–2.8%), Ca (order I: 85–550 ppm; order II: 1000–4500 ppm), Mg (0.09–0.53%), Fe (0.07–0.28%), Ni (65–180 ppm), Co (10–120 ppm). Mo (10–70 ppm), Zn (50–630 ppm), Cu (<10–160 ppm), Mn (<5–25 ppm). The biggest variations were found with respect to N and K, which both seem to have important physiological functions. Although it is unknown whether zinc and copper are essential trace elements for methanogens, all investigated species contained remarkably high zinc contents, whereas copper seemed to be present only in some species.

Index Entries

Methanogenic bacteria, major and trace elements in Methanosarcina, determination of trace and major elements in sodium, in methanogenic bacteria potassium, in methanogenic bacteria magnesium, in methanogenic bacteria iron, in methanogenic bacteria cobalt, in methanogenic bacteria zinc, in methanogenic bacteria manganese, in methanogenic bacteria sulfur, in methanogenic bacteria phosphorus, in methanogenic bacteria nickel, in methanogenic bacteria molybdenum, in methanogenic bacteria copper, in methanogenic bacteria trace elements, determination in methanogenic bacteria elements, determination in methanogenic bacteria plasma emission spectroscopy, of elements in methanogenic bacteria emission spectroscopy, of elements in methanogenic bacteria spectroscopy, of elements in methanogenic bacteria bacteria, determination of elements in ICP, of methanogenic bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe,Microbiol. Rev. 43, 260 (1979).PubMedGoogle Scholar
  2. 2.
    H. J. M. Bowen,Trace Elements in Biochemistry, Academic Press, New York, 1966.Google Scholar
  3. 3.
    G. Diekert, U. Konheiser, K. Piechulla, and R. K. Thauer,J. Bacteriol. 148, 459 (1981).PubMedGoogle Scholar
  4. 4.
    A. A. Esener, J. A. Roels, and N. W. F. Kossen,Biotechnol. Bioeng. 24, 1445 (1982).PubMedCrossRefGoogle Scholar
  5. 4a.
    E. M. Godsy,Appl. Environ. Microbiol. 39, 1074 (1980).PubMedGoogle Scholar
  6. 5.
    E.-G. Graf and R. K. Thauer,FEBS Lett. 136, 165 (1981).CrossRefGoogle Scholar
  7. 6.
    D. Herbert, inMicrobial Reaction to Environment (11th Symp. Soc. General Microbiol.), Cambridge University Press, Cambridge, UK, 1961, pp. 391–416.Google Scholar
  8. 7.
    H. Hippe, D. Caspari, K. Fiebig, and G. Gottschalk,Proc. Natl. Acad. Sci. USA 76, 494 (1979).PubMedCrossRefGoogle Scholar
  9. 8.
    T. J. Hutten, H. C. M. Bongaerts, C. van der Drift, and G. D. Vogels,Antonie van Leeuwenhoek 46, 601 (1980).PubMedCrossRefGoogle Scholar
  10. 9.
    K. F. Jarrell and G. D. Sprott,Can. J. Microbiol. 27, 720 (1981).PubMedGoogle Scholar
  11. 10.
    K. F. Jarrell, J. R. Colvin, and G. D. Sprott,J. Bacteriol. 149, 346 (1982).PubMedGoogle Scholar
  12. 11.
    J. B. Jones and T. C. Stadtman,J. Bacteriol. 130, 1404 (1977).PubMedGoogle Scholar
  13. 12.
    G. E. Jones, L. G. Royle, and L. Murray,Appl. Environ. Microbiol. 38, 800 (1979).PubMedGoogle Scholar
  14. 13.
    O. Kandler and H. König,Arch. Microbiol. 118, 141 (1978).PubMedCrossRefGoogle Scholar
  15. 14.
    T. W. Kirby, J. R. Lancaster, Jr., and I. Fridovich,Arch. Biochem. Biophys. 210 140 (1981).PubMedCrossRefGoogle Scholar
  16. 15.
    F.-C. Kung, J. Raymond, and D. A. Glaser,J. Bacteriol. 126, 1089 (1976).PubMedGoogle Scholar
  17. 16.
    J. K. Lanyi,Biochem. Biophys. Acta 559, 377 (1979).PubMedGoogle Scholar
  18. 17.
    R. A. Mah, M. R. Smith, and L. Baresi,Appl. Environ. Microbiol. 35, 1174 (1978).PubMedGoogle Scholar
  19. 18.
    R. A. Mah and M. R. Smith, inThe Prokaryotes (M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, 1981, pp. 948–977.Google Scholar
  20. 19.
    G. B. Patel, and L. A. Roth,Can. J. Microbiol. 23, 893 (1977).PubMedGoogle Scholar
  21. 20.
    G. B. Patel, A. W. Khan, and L. A. Roth,J. Appl. Microbiol. 45, 347 (1978).CrossRefGoogle Scholar
  22. 21.
    H.-J. Perski, J. Moll, and R. K. Thauer,Arch. Microbiol. 130, 319 (1981).CrossRefGoogle Scholar
  23. 21a.
    H.-J. Perski, P. Schönheit, and R. K. Thauer,FEBS Lett. 143, 323 (1982).CrossRefGoogle Scholar
  24. 22.
    N. Pfennig and K. D. Lippert,Arch. Mikrobiol. 55, 245 (1966).CrossRefGoogle Scholar
  25. 23.
    P. H. Rönnow and L. A. H. Gunnarsson,FEMS Microbiol. Lett. 14, 311 (1982).CrossRefGoogle Scholar
  26. 24.
    P. A. Scherer and R. K. Thauer,Eur. J. Biochem. 85, 125 (1978).PubMedCrossRefGoogle Scholar
  27. 25.
    P. Scherer and H. Sahm, inProceedings of the 1st International Symposium on Anaerobic Digestion, Cardiff, 1979, Poster Papers (D. A. Stafford and B. I. Wheatley, eds.), A. D. Scientific Press, Cardiff, 1980, pp. 45–47.Google Scholar
  28. 26.
    P. Scherer and H. Sahm,Eur. J. Appl. Microbiol. Biotechnol. 12, 28 (1981).CrossRefGoogle Scholar
  29. 27.
    P. Scherer and H. Sahm,Acta Biotechnologica 1, 57 (1981).CrossRefGoogle Scholar
  30. 28.
    P. Scherer, M. Kluge, J. Klein, and H. Sahm,Biotechnol. Bioeng. 23, 1057 (1981).CrossRefGoogle Scholar
  31. 29.
    C. G. T. P. Schnellen, Thesis, Technical University of Delft, The Netherlands, (Rotterdam: De Maastad, publisher), 1947.Google Scholar
  32. 30.
    P. Schönheit, J. Moll, and R. K. Thauer,Arch. Microbiol. 123, 105 (1979).PubMedCrossRefGoogle Scholar
  33. 31.
    G. D. Sprott and K. F. Jarrell,Can. J. Microbiol. 27, 444 (1981).PubMedCrossRefGoogle Scholar
  34. 32.
    T. C. Stadtman, and B. A. Blaylock,Fed. Proc. 25, 1657 (1966).PubMedGoogle Scholar
  35. 33.
    C. H. Suelter, inCRC Handbook of Microbiology, vol. 4, 2nd ed., A. I. Laskin and H. A. Lechevalier, eds., CRC Press, Boca Raton, Florida, 1982, pp. 553–564.Google Scholar
  36. 34.
    F. P. Takacs, T. I. Matula, and R. A. MacLeod,J. Bacteriol. 87, 510 (1964).PubMedGoogle Scholar
  37. 35.
    G. D. Vogels, J. T. Keltjens, T. J. Hutten, and C. van der Drift,Zbl. Bakt. Hyg. I. Abt. Orig. C 3, 258 (1982).Google Scholar
  38. 36.
    W. B. Whitman, E. Ankwanda, and R. S. Wolfe,J. Bacteriol. 149, 852 (1982).PubMedGoogle Scholar
  39. 37.
    R. J. P. Williams,Q. Rev. 24, 331 (1970).CrossRefGoogle Scholar
  40. 38.
    C. R. Woese,Sci. Amer. 244(6), 94 (1981).CrossRefGoogle Scholar
  41. 39.
    E. A. Wolin, M. J. Wolin, and R. S. Wolfe,J. Biol. Chem. 238, 2882 (1963).PubMedGoogle Scholar
  42. 40.
    S. Yamazaki and L. Tsai,Fed. Proc. 39, p. 1698 (Abstr. 490) (1980).Google Scholar
  43. 41.
    S. Yamazaki and L. Tsai,J. Biol. Chem. 255, 6462 (1980).PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1983

Authors and Affiliations

  • P. Scherer
    • 1
    • 2
  • H. Lippert
    • 3
  • G. Wolff
    • 3
  1. 1.Institut für Allgemeine Botanik, Abteilung MikrobiologieUniversität HamburgHamburg 52West Germany
  2. 2.Institut für Biotechnologie 1Kernforschungsanlage JülichJülichWest Germany
  3. 3.Zentralabteilung für Chemische AnalysenKernforschungsanlage Jülich GmbHJülich 1West Germany

Personalised recommendations