Applied Biochemistry and Biotechnology

, Volume 43, Issue 1, pp 37–44 | Cite as

Phenol oxidases production and wood degradation by a thermophilic fungusThermoascus aurantiacus

  • Angela Machuca
  • Nelson Durán
Article

Abstract

The ability of a Brazilian strain ofThermoascus aurantiacus, a thermophilic fungus, to produce extracellular phenol oxidases and to degradeEucalyptus grandis sawdust was studied.T. aurantiacus was capable of good growth in liquid culture containing 1.5% (w/v) of various lignocellulosic substrates (sugar cane bagasse, rice hulls, and chips and sawdust ofE. grandis) plus 5 mg/mL of glucose. When lignocellulosic substrates were used, enzymes involved in cellulose and hemicellulose metabolism were stimulated inT. aurantiacus. It was also found that these substrates have an inductive effect on phenol oxidase production. The most effective inducer of phenol oxidase activity wasE. grandis sawdust, which led to the production of 0.80 U/mL (o-dianisidine oxidation) on day 12. Low phenol oxidase activity was observed at cultures when only glucose was used. Cultures ofT. aurantiacus also exhibited cellobiose-quinone oxidoreductase activity when lignocellulosic materials were used as substrate. However, under our experimental conditions, lignin peroxidase activity was not detected.E. grandis sawdust supplemented with 5 mg/mL of glucose suffered a total weight loss of 6.7% accompanied by 15% lignin loss and 64.4% extractive loss after 21 d incubation withT. aurantiacus.

Index Entries

Thermoascus aurantiacus phenol oxidases thermophilic fungus Eucalyptus grandis decay cellulases xylanases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sharma, H. S. S. (1989),Appl. Microbiol. Biotechnol. 31, 1.CrossRefGoogle Scholar
  2. 2.
    Kawamori, M., Takayama, K., and Takasawa, S. (1987),Agric. Biol. Chem. 51, 647.Google Scholar
  3. 3.
    Tan, L. U. L., Mayers, P. and Saddler, J. N. (1987),Can. J. Microbiol. 33, 689.CrossRefGoogle Scholar
  4. 4.
    Feldman, K. A., Lovett, J. S., and Tsao, G. T. (1988),Enzyme Microbiol. Technol. 10, 262.CrossRefGoogle Scholar
  5. 5.
    Khandke, K. M., Vithayathil, P. J., and Murthy, S. R. (1989),Arch. Biochem. Biophys. 274, 491.CrossRefGoogle Scholar
  6. 6.
    Adams, P. R. (1991),Biotechnol. Appl. Biochem. 13, 430.Google Scholar
  7. 7.
    Adams, P. R. (1992),Biotechnol. Appl. Biochem. 15, 311.Google Scholar
  8. 8.
    Ander, P. and Eriksson, K.-E. (1976),Arch. Microbiol. 109, 1.CrossRefGoogle Scholar
  9. 9.
    Tien, M. and Kirk, T. K. (1983),Science 221, 661.CrossRefGoogle Scholar
  10. 10.
    Glenn, J. K. and Gold, M. H. (1983),Appl. Environ. Microbiol. 45, 1741.Google Scholar
  11. 11.
    Ishihara, T. (1980), InLignin Biodegradation: Microbiology, Chemistry, and Potential Applications, vol. 2, Kirk, T. K., Higuchi, T., and Chang, H. M., eds., CRC Press Inc., Boca Raton, FL, 17–32.Google Scholar
  12. 12.
    Higuchi, T. (1990),Wood Sci. Technol. 24, 23.CrossRefGoogle Scholar
  13. 13.
    Westermark, U. and Eriksson, K.-E. (1974),Acta Chem. Scand. B28, 209.Google Scholar
  14. 14.
    Eriksson, K.-E. (1990),Wood Sci. Technol. 24, 79.CrossRefGoogle Scholar
  15. 15.
    Ander, P., Mishra, C., Farrell, R. L., and Eriksson, K.-E. (1990),J. Biotechnol. 13, 189.CrossRefGoogle Scholar
  16. 16.
    Samejima, M. and Eriksson, K.-E. (1991),FEBS Lett 292, 151.CrossRefGoogle Scholar
  17. 17.
    Barrichelo, L. E. G. (1987),Bol. Biotechnol., FEALQ (Brazil) 8, 2.Google Scholar
  18. 18.
    Auer, C. G., Ferrari, M. P., Tomazello Filho, M., and Barrichelo, L. E. G. (1987),IPEF, Piracicaba, Brazil 37, 45.Google Scholar
  19. 19.
    Fengel, D. and Wegener, G. (1984), InWood: Chemistry, Ultrastructure, Reactions, De Gruyter, Berlin, New York, 182–222.Google Scholar
  20. 20.
    Auer, C. G. (1986), MSC Dissertation, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, Brazil.Google Scholar
  21. 21.
    DIFCO Manual (1978), DIFCO Laborotories, Michigan, USA, 245.Google Scholar
  22. 22.
    Szklarz, G. D., Antibus, R. K., Sinsabaugh, R. L., and Linkins, A. E. (1989),Mycol. 81, 234.CrossRefGoogle Scholar
  23. 23.
    Tien, M. and Kirk, T. K. (1984),Proc. Natl. Acad. Sci. USA 81, 2280.CrossRefGoogle Scholar
  24. 24.
    Mandels, S. M., Andreotti, R., and Roche, C. (1976),Biotechnol. Bioeng. Symp. 6, 21.Google Scholar
  25. 25.
    Miller, G. L. (1959),Anal. Chem. 31, 426.CrossRefGoogle Scholar
  26. 26.
    Pereira, H. and Sardinha,R. (1984),Appita 37, 661.Google Scholar
  27. 27.
    Westermark, U. and Eriksson, K.-E. (1975),Acta Chem. Scan. B29, 419.CrossRefGoogle Scholar
  28. 28.
    Dekker, R. F. H. (1980),J. Gen. Microbiol. 120, 309.Google Scholar
  29. 29.
    Morpeth, F. F. (1985),Biochem. J. 228, 557.Google Scholar
  30. 30.
    Kirk, T. K. and Shimada, M. (1985), InBiosynthesis and Biodegradation of Wood Components. Higuchi, T., ed., Academic, Orlando, FL, 579–605.Google Scholar
  31. 31.
    Kirk, T. K. and Farrell, R. L. (1987),Ann. Rev. Microbiol. 41, 465.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1993

Authors and Affiliations

  • Angela Machuca
    • 1
  • Nelson Durán
    • 1
  1. 1.Instituto de Quimica, Biological Chemistry LaboratoryUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations