Applied Biochemistry and Biotechnology

, Volume 38, Issue 1–2, pp 83–92

Salt-tolerant and thermostable alkaline protease fromBacillus subtilis NCIM No. 64

  • Asha A. Kembhavi
  • Anuradha Kulkarni
  • Aditi Pant


The proteolytic activity produced by aBacillus subtilis isolated from a hot spring was investigated. Maximum protease production was obtained after 38 h of fermentation. Effects of various carbon and nitrogen sources indicate the requirement of starch and bacteriological peptone to be the best inducers for maximum protease production. Requirement for phosphorus was very evident, and the protease was secreted over a wide range of pH 5–11.

The partially purified enzyme was stable at 60°C for 30 min. Calcium ions were effective in stabilizing the enzyme, especially at higher temperature. The enzyme was extremely salt tolerant and retained 100% activity in 5M NaCl over 96 h. The molecular weight of the purified enzymes as determined by SDS-PAGE was 28,000. The enzyme was completely inactivated by PMSF, but little affected by urea, sodium dodecyl sulfate, and sodium tripoly phosphate.

Index Entries

Alkaline protease salt and thermostable protease Bacillus subtilis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCon, J. W., Tsuru, D., and Yasunobu, K. (1974),J. Biol. Chem. 239, 3706.Google Scholar
  2. 2.
    Tsuru, D., Kira, H., Yammato, Y., and Fukumoto, J. (1967),Agric. Biol. Chem. 31, 718.Google Scholar
  3. 3.
    Hunt, J. A. and Ottensen, M. (1961),Biochem. Biophys. Acta. 48, 411.CrossRefGoogle Scholar
  4. 4.
    Boyer, H. W. and Carlton, B. C. (1968),Arch. Biochem. Biophys. 128, 442.CrossRefGoogle Scholar
  5. 5.
    Sinha, N. and Satyanarayana, T. (1991),Ind. J. Microbiol. 31, 425.Google Scholar
  6. 6.
    Kalisz, H. M. (1988), inAdvances in Biochem. Engg and Biotech., vol. 36, Feichter, A., ed., Springer-Verlag, Berlin, Heidelberg.Google Scholar
  7. 7.
    Qoronfleh, M. W. and Streips, U. N. (1986),Biochem. Biophys. Res. Comm. 138, 526.CrossRefGoogle Scholar
  8. 8.
    Kelly, C. T. and Fogarty, W. M. (1976),Process Biochem. 11, 3.Google Scholar
  9. 9.
    Khire, J. M. and Pant, A. (1992),World J. Microbiol. Biotech. 8, 167.CrossRefGoogle Scholar
  10. 10.
    Buchanan, R. E. and Gibbons, N. E. (1974),Bergey's Manual of Determinative Bacteriology, 8th ed. The Williams and Wilkins Co., Baltimore.Google Scholar
  11. 11.
    Kunitz, M. (1947),J. Gen. Physiol. 30, 291.CrossRefGoogle Scholar
  12. 12.
    Millet, J. (1970),J. Appl. Bacteriol. 33, 207.Google Scholar
  13. 13.
    Nehete, P. N., Shah, V. D., and Kothari, R. M. (1986),Enz. Microbiol. Tech. 8, 370.CrossRefGoogle Scholar
  14. 14.
    Takami, H., Akiba, T., and Harikoshi, K. (1989)Appl. Microbiol. Biotech. 30, 120.CrossRefGoogle Scholar
  15. 15.
    Ferrari, E., Howard, S. M. H., and Hoch, J. A. (1986),J. Bacteriol. 166, 173.Google Scholar
  16. 16.
    Moon, S. H. and Parulekar, S. J. (1991),Biotech. Bioeng. 37, 467.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Asha A. Kembhavi
    • 1
  • Anuradha Kulkarni
    • 1
  • Aditi Pant
    • 1
  1. 1.Division of Biochemical SciencesNational Chemical LaboratoryPuneIndia

Personalised recommendations