Advertisement

A Petrov-Galerkin Natural Element Method Securing the Numerical Integration Accuracy

  • Jin-Rae ChoEmail author
  • Hong-Woo Lee
Article

Abstract

An improved meshfree method called the Petrov-Galerkin natural element (PG-NE) method is introduced in order to secure the numerical integration accuracy. As in the Bubnov-Galerkin natural element (BG-NE) method, we use Laplace interpolation function for the trial basis function and Delaunay triangles to define a regular integration background mesh. But, unlike the BG-NE method, the test basis function is differently chosen, based on the Petrov-Galerkin concept, such that its support coincides exactly with a regular integration region in background mesh. Illustrative numerical experiments verify that the present method successfully prevents the numerical accuracy deterioration stemming from the numerical integration error.

Key Words

Petrov-Galerkin Natural Element Method Laplace Interpolation Function Constant Strain Basis Function Numerical Integration Accuracy Convergence Assessment 

References

  1. ANSYS, Inc., 1998, User’s Manual (ver. 5.5.1), Houston, PA.Google Scholar
  2. Atluri, S. N. and Zhu, T., 1998, “A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics,”Computational Mechanics, Vol. 22, pp. 117–127.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Belikov, V. V., Ivanov, V. D., Kontorovich, V. K., Korytnik, S. A. and Semenov, A. Yu, 1997, “The Non-Sibsonian Interpolation: a New Method of Interpolation of the Values of a Function on an Arbitrary Set of Points,”Comput. Math. Math. Phys., Vol. 37, pp. 9–15.MathSciNetGoogle Scholar
  4. Belytschko, T., Lu, Y. Y. and Gu, L., 1994, “Element-free Galerkin Methods,”Int. J. Numer. Methods Engng., Vol. 37, pp. 229–256.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Braun, J. and Sambridge, M., 1995, “A Numerical Method for Solving Partial Differential Equations on Highly Irregular Evolving Grids,” Nature, Vol. 376, pp. 655–660.CrossRefGoogle Scholar
  6. Cho, J. R. and Lee, S. Y., 2002, “Dynamic Analysis of Baffled Fuel-Storage Tanks Using the ALE Finite Element Method,”Int. J. Numer. Methods Fluids, Vol. 41, pp. 185–208.CrossRefGoogle Scholar
  7. Cho, J. R. and Oden, J. T., 1997, “Locking and Boundary Layer in Hierarchical Models for Thin Elastic Structures,”Comput. Methods Appl. Mech. Engrg., Vol. 149, pp. 33–48.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Cueto, E., Calvo, B. and Doblare, M., 2002, “Modelling Three-Dimensional Piece-wise Homogeneous Domains Using the Shape-based Natural Element Method,”Int. J. Numer. Methods Engng., Vol. 54, pp. 871–897.zbMATHCrossRefGoogle Scholar
  9. Dolbow, J. and Belytschko, T., 1999, “Numerical Integration of the Galerkin Weak Form in Meshfree Methods,”Computational Mechanics, Vol.23, pp. 219–230.zbMATHCrossRefMathSciNetGoogle Scholar
  10. Duarte, C. A. and Oden, J. T., 1996, “An h-p Adaptive Method Using Clouds,”Comput. Methods Appl. Mech. Engrg., Vol. 139, pp. 237–262.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Farin, G., 1990, “Surface over Dirichlet Tessellations,”Comput. Aided Geom. Des., Vol. 7, No. 1-4, pp. 281–292.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Green, P. J. and Sibson, R., 1978, “Computing Dirichlet Tessellations in the Plane,”The Computer Journal, Vol. 21, pp. 168–173.MathSciNetzbMATHGoogle Scholar
  13. Hiyoshi, H. and Sugihara, K., 1999, “Two Generalization of an Interpolant based on Voronoi Diagrams,”Int. J. Shape Modeling, Vol. 5, pp. 219–231.CrossRefGoogle Scholar
  14. Liu, W. K., Jun, S. and Zhang, Y. F., 1995, “Reproducing Kernel Particle Methods,”Int. J. Numer. Methods Fluids, Vol. 20, pp. 1081–1106.zbMATHCrossRefMathSciNetGoogle Scholar
  15. Melenk, J. M. and Babuska, I., 1996, “The Partition of Unity Finite Element Method: Basic Theory and Applications,”Comput. Methods Appl. Mech. Engrg., Vol. 139, pp. 289 - 314.zbMATHCrossRefMathSciNetGoogle Scholar
  16. Nayroles, B., 1992, “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,”Computational Mechanics, Vol. 10, pp. 307–318.zbMATHCrossRefGoogle Scholar
  17. Okabe, A., Boots, B. and Sugihara, K., 1992,Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons, England.zbMATHGoogle Scholar
  18. Piper, P., 1993, “Properties of Local Coordinates based on Dirichlet Tessellations,”in Farin, G, Hagan, H. and Noltemeier, H. (eds.),Geometric Modelling, Vol. 8, pp. 227–239.Google Scholar
  19. Sambridge, M, Braun, J. and McQueen, H, 1995, “Geophysical Parameterization and Interpolant of Irregular Data Using Natural Neighbors,”Geophysical Journal International, Vol. 122, pp. 837–857.CrossRefGoogle Scholar
  20. Sibson, R., 1980, “A Vector Identity for Dirichlet Tessellation,”Mathematical Proc. the Cambridge Philosophical Society, Vol.80, pp.151 -155.MathSciNetCrossRefGoogle Scholar
  21. Strang, G. and Fix, G. J., 1973,An Analysis of the Finite Element Method, Prentice-Hall, New Jersey.zbMATHGoogle Scholar
  22. Sukumar, N, and Moran, A. and Belytschko, T., 1998, “The Natural Element Method in Solid Mechanics,”Int. J. Numer. Methods Engng., Vol. 43, pp. 839–887.zbMATHCrossRefMathSciNetGoogle Scholar
  23. Timoshenko, S. P. and Goodier, J. N., 1970,Theory of Elasticity, McGraw-Hill, New York.zbMATHGoogle Scholar
  24. Traversoni, L., 1994, “Natural Neighbor Finite Elements,”Proc. Int. Conf. Hydraulic Engineering Software, Vol. 2, pp. 291–297.Google Scholar
  25. Zhu, T. and Atluri, S. N., 1998, “A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method,”Computational Mechanics, Vol. 21, pp. 211–222.zbMATHCrossRefMathSciNetGoogle Scholar
  26. Zienkiewicz, O. C. and Taylor, R. L., 1989,The Finite Element Method: Basic Formulation and Linear Problems, McGraw-Hill, Singapore.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers (KSME) 2006

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea

Personalised recommendations