Advertisement

Acta Informatica

, Volume 26, Issue 1–2, pp 131–192 | Cite as

High level tree transducers and iterated pushdown tree transducers

  • Joost Engelfriet
  • Heiko Vogler
Article

Summary

n-level tree transducers (n≧0) combine the features ofn-level tree grammars and of top-down tree transducers in the sense that the derivations of the tree grammars are syntax-directed by input trees. For runningn, the sequence ofn-level tree transducers starts with top-down tree transducers (n=0) and macro tree transducers (n=1). In this paper the class of tree-to-tree translations computed byn-level tree transducers is characterized byn-iterated pushdown tree transducers. Such a transducer can be considered as a regular tree grammar of which the derivations are syntax-directed byn-iterated pushdowns of trees; ann-iterated pushdown of trees is a pushdown of pushdowns of ... of pushdowns (n times) of trees. In particular, we investigate the total deterministic case, which is relevant for syntax-directed semantics of programming languages.

Keywords

Boolean Expression Input Tree Finite Restriction Tree Automaton Storage Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AhoUll1] Aho, A.V., Ullman, J.D.: Translations on a context-free grammar. Inf. Control19, 439–475 (1971)CrossRefMathSciNetGoogle Scholar
  2. [AhoUll2] Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling. Vol. 1, 2. Englewood Cliffs, N.J.: Prentice Hall 1973Google Scholar
  3. [Bra] Brainerd, W.S.: Tree generating regular systems. Inform. Control14, 217–231 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [ChiMar] Chirica, L.M., Martin, D.E.: An order algebraic definition of Knuthian semantics. Math. Syst. Theory13, 1–27 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [CouFra] Courcelle, B., Franchi-Zannettacci, P.: Attribute grammars and recursive program schemes I, II. Theor. Comput. Sci.17, 163–191 (1982); Theor. Comput. Sci.17, 235–257 (1982)CrossRefMathSciNetGoogle Scholar
  6. [Dam] Damm, W.: The IO- and OI-hierarchies. Theor. Comput. Sci.20, 95–206 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [DamGoe] Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-hierarchy. Inf. Control71, 1–32 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [DamGue1] Damm, W., Guessarian, I.: CombiningT and Leveln. In: Proceedings of the 9th Mathematical Foundations of Computer Sciences 1981. (Lect. Notes Comput. Sci., Vol. 118, p. 262–270). Berlin Heidelberg New York: Springer 1981Google Scholar
  9. [DamGue2] Damm, W., Guessarian, I.: Implementation techniques for recursive tree transducers on higher-order data types. Report 83-16, Laboratoire Informatique Theorique et Programmation, Université Paris 7 (1983)Google Scholar
  10. [Eng1] Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison. Math. Syst. Theory9, 198–231 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Eng2] Engelfriet, J.: Top-down tree transducers with regular, look-ahead. Math. Syst. Theory10, 289–303 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Eng3] Engelfriet, J.: Some open questions and recent results on tree transducers and tree languages. In: Book, R.V. (ed.) Formal language theory; perspectives and open problems. New York: Academic Press 1980Google Scholar
  13. [Eng4] Engelfriet, J.: Tree transducers and syntax-directed semantics. TW-Memorandum Nr.363 (1981), Twente University of Technology; also: Proceedings of the 7th CAAP, march 1982, Lille, pp. 82–107Google Scholar
  14. [Eng5] Engelfriet, J.: Recursive automata. (1982, unpublished notes)Google Scholar
  15. [Eng6] Engelfriet, J.: Iterated pushdown automata and complexity classes. Proceedings of the 15th STOC, april 1983, Boston, pp. 365–373. New York: ACM 1983Google Scholar
  16. [Eng7] Engelfriet, J.: Three hierarchies of transducers Math. Syst. Theory15, 95–125 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [EngFil] Engelfriet, J., File G.: The formal power of one-visit attribute grammars. Acta Informatica16, 275–302 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [EngRozSch] Engelfriet, J., Rozenberg, G., Slutzki G.: Tree transducers, L-systems, and two-way machines. J. Comput. Syst. Sci.20, 150–202 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [EngSch] Engelfriet, J., Schmidt, E.M.: IO and OI. J. Comput. Syst. Sci.15, 328–353 (1977); J. Comput. Sci.16, 67–99 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  20. [EngVog1] Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. Syst. Sci.31, 71–146 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [EngVog2] Engelfriet, J., Vogler, H.: Regular characterizations of macro tree transducers. In: Courcelle B. (ed.) 9th Colloquium on Trees in Algebra and Programming, march 1984, Bordeaux, France. Cambridge University Press, pp. 103–117Google Scholar
  22. [EngVog3]=[EV] Engelfriet, J., Vogler, H.: Pushdown machines for the macro tree transducer. Theor. Comput. Sci.42, 251–369 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [EngVog4] Engelfriet, J., Vogler, H.: Characterization of high level tree transducers. In: Brauer, W. (ed.) Proceedings of 12th International Colloqium on Automata, Languages, and Programming 1985, Nafplion, Greece. (Lect. Notes Comput. Sci., Vol. 199, pp. 171–178) Berlin Heidelberg New York: Springer 1985Google Scholar
  24. [Fis] Fischer, M.J., Grammars with macro-like productions; Ph.D. Thesis, Harvard University, USA, 1968Google Scholar
  25. [GecSte] Gecseg, F., Steinby, M.: Tree automata. Budapest: Akademiai Kiado 1984zbMATHGoogle Scholar
  26. [Gre] Greibach, S.A.: Full AFLs and nested iterated substitution. Inf. Control16, 7–35 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  27. [Gue] Guessarian, I.: Pushdown tree automata. Math. Syst. Theory16, 237–263 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [HopUll] Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata. Addison-Wesley Publ. Comp. 1969Google Scholar
  29. [Knu] Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory2, 127–145 (1968); Correction: Math. Syst. Theory5, 95–96 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  30. [Mai] Maibaum, T.S.E.: A generalized approach to formal languages. J. Comput. Syst. Sci.8, 409–439 (1974)zbMATHMathSciNetGoogle Scholar
  31. [Mas] Maslov, A.N.: Multi-level stack automata. Probl. Inf. Transm.12, 38–43 (1976).Google Scholar
  32. [MarVer] Martin, D.F., Vere, S.A.: On syntax-directed transductions and tree transducers. 2nd Annual ACM Symposium on Theory of Computation, May 1970Google Scholar
  33. [Rou] Rounds, W.C.: Mappings and grammars on trees. Math. Syst. Theory4, 257–287 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  34. [Sco] Scott, D.: Some definitional suggestions for automata theory. J. Comput. Syst. Sci.1, 187–212 (1967)zbMATHGoogle Scholar
  35. [Tha] Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput Syst. Sci.4, 339–367 (1970)zbMATHMathSciNetGoogle Scholar
  36. [Vog1] Vogler, H.: Berechnungsmodelle syntaxgesteuerter Übersetzungen. Diplomarbeit, RWTH Aachen, April 1981Google Scholar
  37. [Vog2] Vogler, H.: The OI-hierarchy is closed under control. Inf. Computat. 1988 (to appear)Google Scholar
  38. [Vog3] Vogler, H.: Tree transducers and pushdown machines. Ph.D. thesis, Twente University of Technology, The Netherlands, March 1986Google Scholar
  39. [vLe] Leeuwen, J. van: Notes on pre-set pushdown automata. In: Rozenberg, G., Salomaa, A. (eds.) L Systems. (Lect. Notes Comput. Sci., Vol. 15, pp. 177–188) Berlin, Heidelberg New York: Springer 1974Google Scholar
  40. [Wat] Watt, D.A.: Contextual constraints. In: Lorho, B. (ed.) Methods and tools for compiler construction, an advanced course. pp. 45–80. Cambridge: Cambridge University Press 1984Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Joost Engelfriet
    • 1
  • Heiko Vogler
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of LeidenLeidenThe Netherlands

Personalised recommendations