A new instrumental variable estimation for diffusion processes

  • Beong Soo So
Stochastic Process


We consider the problem of parametric inference from continuous sample paths of the diffusion processes {x(t)} generated by the system of possibly nonstationary and/or nonlinear Ito stochastic differential equations. We propose a new instrumental variable estimator of the parameter whose pivotal statistic has a Gaussian distribution for all possible values of parameter. The new estimator enables us to construct exact level-α confidence intervals and tests for the parameter in the possibly non-stationary and/or nonlinear diffusion processes. Applications to several non-stationary and/or nonlinear diffusion processes are considered as examples.

Key words and phrases

Non-stationary nonlinear diffusion instrumental variable estimator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arato, M., Kolmogorov, A. N. and Sinai, Ya. G. (1962). Evaluation of the parameters of a complex stationary Gauss-Markov process,Soviet Mathematics Doklady,3, 1368–1371.Google Scholar
  2. Basawa, I. V. and Prakasa Rao, B. L. S. (1980).Statistical Inference for Stochastic Processes, Academic Press, London.zbMATHGoogle Scholar
  3. Cauchy, A. L. (1836). On a new formula for solving the problem of interpolation in a manner applicable to physical investigations,Philosophical Magazine,8, 459–486.Google Scholar
  4. Dickey, D. A., Hasza, D. P. and Fuller, W. A. (1984). Testing for unit roots in seasonal time series,Journal of the American Statistical Association,79, 355–377.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Gushchin, A. and Küchler, U. (1999). Asymptotic inference for a linear stochastic differential equation with time delay,Bernoulli,5(6), 1059–1098.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Hull, J. C. (1999).Options, Futures and Other Derivative Secyrities, Prentice-Hall, New York.Google Scholar
  7. James, J. and Webber, N. (2000).Interest Rate Modelling, Wiley, New York.Google Scholar
  8. Karlin, S. and Taylor, H. (1981).A Second Course in Stochastic Processes, Academic Press, New York.zbMATHGoogle Scholar
  9. Kloeden, P. E., Platen, E. and Schurz, H. (1994).Numerical Solution of Stochastic Differential Equations, Springer, Berlin.Google Scholar
  10. Kutoyants, Yu. A. (1975). On the hypothesis testing problem and asymptotic normality of stochastic integrals,Theory of Probability and Its Applications,20, 376–384.zbMATHCrossRefGoogle Scholar
  11. Kutoyants, Yu. A. (2003).Statistical Inference for Ergodic Diffusion Processes, Springer, New York.Google Scholar
  12. Liptser, R. S. and Shiryayev, A. N. (1999).Statistics of Random Processes II; Applications 2nd ed., Springer, New York.Google Scholar
  13. Prakasa Rao, B. L. S. (1999).Statistical Inference for Diffusion Type Processes, Oxford University Press, New York.zbMATHGoogle Scholar
  14. Revuz, D. and Yor, M. (1999).Continuous Martingales and Brownian Motion, 3rd ed., Springer, New York.zbMATHGoogle Scholar
  15. So, B. S. and Shin, D. W. (1999). Cauchy estimators for autoregressive processes with applications to unit root tests and confidence intervals,Econometric Theory,15, 165–176.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 2005

Authors and Affiliations

  • Beong Soo So
    • 1
  1. 1.Department of StatisticsEwha Womans UniversitySeoulKorea

Personalised recommendations