Dependence of Hurricane intensity and structures on vertical resolution and time-step size

  • Da-Lin ZhangEmail author
  • Xiaoxue Wang


In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.

Key words

hurricane intensity vertical resolution numerical weather prediction 


  1. Anthes, R. A., and D. Keyser, 1979: Tests of a fine-mesh model over Europe and the United States.Mon Wea. Rev.,107, 963–984.CrossRefGoogle Scholar
  2. Chou, M.-D., 1975: A study of the effects of vertical resolution and measurement errors on an iteratively inverted temperature profile.J. Atmos. Sci.,32, 419–426.CrossRefGoogle Scholar
  3. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model.,J. Atmos. Sci.,46, 3077–3107.CrossRefGoogle Scholar
  4. Dudhia, J., 1993: A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front.Mon. Wea. Rev.,121, 1493–1513.CrossRefGoogle Scholar
  5. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance.J. Atmos. Sci.,43, 585–604.CrossRefGoogle Scholar
  6. Hamilton, K., R. J. Wilson, and R. S. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics.J. Atmos. Sci.,56, 3829–3846.CrossRefGoogle Scholar
  7. Lane, D. E., R. C. J. Somerville, and S. F. Iacobellis, 2000: Sensitivity of cloud and radiation parameterizations to changes in vertical resolution.J. Climate,13, 915–922.CrossRefGoogle Scholar
  8. Lindzen, R. S., and M. S. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution.Mon. Wea. Rev.,117, 2575–2583.CrossRefGoogle Scholar
  9. Liu, Y., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: An explicit simulation.Mon. Wea. Rev.,125, 3073–3093.CrossRefGoogle Scholar
  10. Liu, Y., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures.Mon. Wea. Rev.,127, 2597–2616.CrossRefGoogle Scholar
  11. Pecnick, M. J., and D. Keyser, 1989: The effect of spatial resolution on the simulation of uppertropospheric frontogenesis using a sigma-coordinate primitive equation model.Meteor. Atmos. Phys.,40, 137–149.CrossRefGoogle Scholar
  12. Persson, P. O. G., and T. T. Warner, 1991: Model generation of spurious gravity waves due to inconsistency of the vertical and horizontal resolution.Mon. Wea. Rev.,119, 917–935.CrossRefGoogle Scholar
  13. Powell, M. D., and S. H. Houston, 1999: Comments on “A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification”Mon. Wea. Rev.,127, 1706–1710.CrossRefGoogle Scholar
  14. Smith, G. B., II, and M. T. Montgomery, 1995: Vortex axisymmetrization and its dependence on azimuthal wavenumber or asymmetric radial structure changes.Quart. J. Roy. Meteor. Soc.,121, 1615–1650.CrossRefGoogle Scholar
  15. Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description.Terr. Atmos. Oceanic Sci.,4, 35–72.Google Scholar
  16. Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment.Mon. Wea. Rev.,117, 231–235.CrossRefGoogle Scholar
  17. Tracton, M. S., 1973: The role of cumulus convection in the development of extratropical cyclones.Mon. Wea. Rev.,107, 572–593.Google Scholar
  18. Wang, X., 2002: Sensitivity of numerical simulation of Hurricane Andrew (1992) to varying vertical resolution. M.S. Scholarly Paper, University of Maryland, 49pp.Google Scholar
  19. Weaver, A. J., and E. S. Sarachik, 1990: On the importance of vertical resolution in certain ocean general circulation models.J. Phys. Oceanogr.,20, 600–609.CrossRefGoogle Scholar
  20. Willoughby, H. E., and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster.Bull. Amer. Meteor. Soc.,77, 543–549.CrossRefGoogle Scholar
  21. Xu, M., J.-W. Bao, T. T. Warner, and D. J. Stensrud, 2001: Effect of time step size in MM5 simulations of a mesoscale convective system.Mon. Wea. Rev. 129, 501–516.Google Scholar
  22. Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer-Sensitivity tests and comparisons with SESAME-79 data.J. Appl. Meteor.,21, 1594–1609.CrossRefGoogle Scholar
  23. Zhang, D.-L., and J. M. Fritsch, 1988a: Numerical sensitivity experiments of varying model physics on the structure, evolution and dynamics of two mesoscale convective systems.J. Atmos. Sci.,45, 261–293.CrossRefGoogle Scholar
  24. Zhang, D.-L., and J. M. Fritsch, 1988b: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part III. Internal gravity waves and the squall line.J. Atmos. Sci.,45, 1252–1268.CrossRefGoogle Scholar
  25. Zhang, D.-L., and J. M. Fritsch, 1988c: A numerical investigation of a convectively generated, inertially stable, extratropical warm-core mesovortex over land. Part I: Structure and evolution.Mon. Wea. Rev.,116, 2660–2687.CrossRefGoogle Scholar
  26. Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV:Unbalanced flows.Mon. Wea. Rev.,129, 92–107.CrossRefGoogle Scholar
  27. Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics.Mon. Wea. Rev.,130, 2745–2763.CrossRefGoogle Scholar

Copyright information

© Advances in Atmospheric Sciences 2003

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of MarylandCollege ParkUSA

Personalised recommendations