Advances in Atmospheric Sciences

, Volume 20, Issue 5, pp 677–693 | Cite as

Glacial-interglacial atmospheric CO2 change —The glacial burial hypothesis

  • Ning ZengEmail author


Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to be the missing link in the atmospheric CO2 change over the glacial-interglacial cycles. At glaciation, the advancement of continental ice sheets buries vegetation and soil carbon accumulated during warmer periods. At deglaciation, this burial carbon is released back into the atmosphere. In a simulation over two glacial-interglacial cycles using a synchronously coupled atmosphere-land-ocean carbon model forced by reconstructed climate change, it is found that there is a 547-Gt terrestrial carbon release from glacial maximum to interglacial, resulting in a 60-Gt (about 30-ppmv) increase in the atmospheric CO2, with the remainder absorbed by the ocean in a scenario in which ocean acts as a passive buffer. This is in contrast to previous estimates of a land uptake at deglaciation. This carbon source originates from glacial burial, continental shelf, and other land areas in response to changes in ice cover, sea level, and climate. The input of light isotope enriched terrestrial carbon causes atmospheric δ13C to drop by about 0.3‰ at deglaciation, followed by a rapid rise towards a high interglacial value in response to oceanic warming and regrowth on land. Together with other ocean based mechanisms such as change in ocean temperature, the glacial burial hypothesis may offer a full explanation of the observed 80–100-ppmv atmospheric CO2 change.

Key words

atmospheric CO2 ice age glacial burial hypothesis climate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. M., H. Faure, L. Faure-Denard, J. M. McGlade, and others, 1990: Increase in terrestrial carbon storage from the last glacial maximum to the present.Nature,348, 711–714.CrossRefGoogle Scholar
  2. Adams, J. M. and H. Faure, 1998: A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction.Global Planet. Change,17, 3–24.CrossRefGoogle Scholar
  3. Archer, D., A. Winguth, D. Lea, and N. Mahowald, 2000: What caused the glacial/interglacial atmospheric pCO(2) cycles?Rev. Geophys.,38, 159–189.CrossRefGoogle Scholar
  4. Beerling, D. J., 1999: New estimates of carbon transfer to terrestrial ecosystems between the last glacial maximum and the Holocene.Terra Nova,11, 162–167.CrossRefGoogle Scholar
  5. Berger, W. H., and E. Vincent, 1986: Deep-sea carbonates: Reading the carbon isotope signal.Geol. Rundschau.,75, 249–269.CrossRefGoogle Scholar
  6. Bird, M. I., J. Lloyd, and G. D. Farquhar, 1994: Terrestrial carbon storage at the LGM.Nature,371, 566–566.CrossRefGoogle Scholar
  7. Broecker, W. S., and G. M. Henderson, 1998: The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes.Paleoceanography,13, 352–364.CrossRefGoogle Scholar
  8. Collatz, G. J., J. A. Berry, and J. S. Clark, 1998: Effects of climate and atmospheric CO2 partial pressure on the global distribution of C-4 grasses: Present, past, and future.Oecologia,114, 441–454.CrossRefGoogle Scholar
  9. Crowley, T. J., 1995: Ice age terrestrial carbon changes revisited.Global Biogeochem. Cycle,9, 377–389.CrossRefGoogle Scholar
  10. Curry, W. B., J.-C. Duplessy, L. D. Labeyrie, and N. J. Shackleton, 1988: Changes in the distribution ofdelta 13C of deep water CO2 between the last glacial and the Holocene.Paleoceanography,3, 317–341.CrossRefGoogle Scholar
  11. Duplessy, J. -C., N. J. Shackleton, R. J. Fairbanks, L. D. Labeyrie, D. Oppo, and N. Kallel, 1988: Deep water source variations during the last climatic cycle and their impact on the global deep water circulation.Paleoceanography 3, 343–360.CrossRefGoogle Scholar
  12. Esser, G., and M. Lautenschlager, 1994: Estimating the change of carbon in the terrestrial biosphere from 18 000 BP to present using a carbon cycle model.Environ. Pollut.,83, 45–53.CrossRefGoogle Scholar
  13. Falkowski, P., R. J. Scholes, E. Boyle, and others, 2000: The global carbon cycle: A test of our knowledge of earth as a system.Science,290, 291–296.CrossRefGoogle Scholar
  14. Field, C. B., 2001: Plant physiology of the “missing” carbon sink.Plant Physiology,125, 25–28.CrossRefGoogle Scholar
  15. Francois, L. M., C. Delire, P. Warnant, and G. Munhoven, 1998: Modelling the glacial-interglacial changes in the continental biosphere.Global Planet. Change,17, 37–52.CrossRefGoogle Scholar
  16. Franzen, L. G., 1994: Are wetlands the key to the ice-age cycle enigma.Ambio,23, 300–308.Google Scholar
  17. Friedlingstein, P., C. Delire, J. F. Muller, and J. C. Gerard, 1992: The climate induced variation of the continental biosphere: a model simulation of the last glacial maximum.Geophys. Res. Lett.,19, 897–900.CrossRefGoogle Scholar
  18. Friedlingstein, P., K. C. Prentice, I. Y. Fung, J. G. John, and G. P. Brasseur, 1995: Carbon-biosphere-climate interaction in the last glacial maximum climate.J. Geophys. Res.,100, 7203–7221.CrossRefGoogle Scholar
  19. Gildor, H., and E. Tziperman, 2001: Physical mechanisms behind biogeochemical glacial-interglacial CO2 variations.Geophys. Res. Lett.,28(12), 2421–2424.CrossRefGoogle Scholar
  20. Harden, J. W., E. T. Sundquist, R. F. Stallard, and R. K. Mark, 1992: Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet.Science,258, 1921–1924.CrossRefGoogle Scholar
  21. Heinze, C., 2001: Towards the time dependent modeling of sediment core data on a global basis.Geophys. Res. Lett.,28, 4211–4214.CrossRefGoogle Scholar
  22. Heinze, C., and E. Maier-Reimer, 1999: The Hamburg Oceanic Carbon Cycle Circulation Model Version “HAMOCC2s” for long time integrations. DKRZ Rep. 20, Ger. Clim. Comput. Cent., Hamburg.Google Scholar
  23. Kaplan, J. O., I. C. Prentice, W. Knorr, and others, 2002: Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum.Geophys. Res. Lett.,29(22), 2074.CrossRefGoogle Scholar
  24. Keir, R. S., 1995: Is there a component of Pleistocene CO2 change associated with carbonate dissolution cycles.Paleoceanography,10: 871–880.CrossRefGoogle Scholar
  25. Klinger, L. F., 1991: Peatland formation and ice ages: A possible Gaian mechanism related to community succession.Scientists on Gaia, S. H. Schneider and P. J. Boston, Eds., MIT press, Cambridge, Mass, 247–255Google Scholar
  26. Kutzbach, J., R. Gallimore, S. Harrison, P. Behling, and others, 1998: Climate and biome simulations for the past 21 000 years.Quaternary Sci. Rev.,17, 473–506.CrossRefGoogle Scholar
  27. Leuenberger, M., U. Siegenthaler, and C. C. Langway, 1992: Carbon isotope composition of atmospheric CO2 during the last ice-age from an Antarctic ice core.Nature,357, 488–490.CrossRefGoogle Scholar
  28. Liski, J., H. Ilvesniemi, A. Makela, C. J. Westman, 1999: CO2 emissions from soil in response to climatic warming are overestimated-The decomposition of old soil organic matter is tolerant of temperature.Ambio,28, 171–174.Google Scholar
  29. Lynch-Stieglitz, J., and R. G. Fairbanks, 1994: A conservative tracer for glacial ocean circulation from carbon isotope and palaeo-nutrient measurements in benthic foraminifera.Nature,369: 308–310.CrossRefGoogle Scholar
  30. MacAyeal, D. R., 1993: BINGE/PURGE oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic Heinrich events.Paleoceanography,8, 775–784.CrossRefGoogle Scholar
  31. Marino, B. D., M. B. McElroy, R. J. Salawitch, and W. G. Spaulding, 1992: Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2.Nature,357, 461–466.CrossRefGoogle Scholar
  32. Martin, J. H., 1990: Glacial-interglacial CO2 change: The iron hypothesis.Paleoceanography,5, 1–13.CrossRefGoogle Scholar
  33. Maslin, M., and E. Thomas, 2003: Balancing the deglacial global carbon budget: The hydrate factor.Quaternary Sci. Rev.,22, 1729–1736.CrossRefGoogle Scholar
  34. Maslin, M. A., J. Adams, E. Thomas, H. Faure, and R. Haines-Young, 1995: Estimating the carbon transfer between the ocean, atmosphere and the terrestrial biosphere since the last glacial maximum.Terra Nova,7, 358–366.CrossRefGoogle Scholar
  35. New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space-time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology.J. Climate.,12, 829–856.CrossRefGoogle Scholar
  36. Ninnemann, U. S., and C. D. Charles, 1997: Regional differences in Quaternary Subantarctic nutrient cycling: Link to intermediate and deep water ventilation.Paleoceanography,12: 560–567.CrossRefGoogle Scholar
  37. Olson, J. S., R. M. Garrels, R. A. Berner, T. V. Armentano, M. I. Dyer, and D. H. Yaalon, 1985: The natural carbon cycle.Atmospheric Carbon Dioxide and the Global Carbon Cycle, J. R. Trabalka, Ed., US DOE/ER0239, Washington D.C., section 8.3.2, 186–188.Google Scholar
  38. Otto, D., D. Rasse, J. Kaplan, and others, 2002: Biospheric carbon stocks reconstructed at the Last Glacial Maximum: Comparison between general circulation models using prescribed and computed sea surface temperatures.Global Planet Change,33, 117–138.CrossRefGoogle Scholar
  39. Peltier, W. R., 1994: Ice age paleotopography.Science,265, 195–201.CrossRefGoogle Scholar
  40. Peng, C. H., J. Guiot, and E. van Campo, 1995: Reconstruction of the past terrestrial carbon storage of the Northern Hemisphere from the Osnabrueck Biosphere Model and palaeodata.Climate Research,5, 107–118.CrossRefGoogle Scholar
  41. Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, and others, 1999: Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica.Nature,399, 429–436.CrossRefGoogle Scholar
  42. Pinot, S., G. Ramstein, S. P. Harrison, I. C. Prentice, and others, 1999: Tropical paleoclimates at the Last Glacial Maximum: Comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata.Climate Dyn.,15, 857–874.CrossRefGoogle Scholar
  43. Prentice, I. C., M. T. Sykes, M. Lautenschlager, S. P. Harrison, O. Denissenki, and P. J. Bartlein, 1993: Modeling the increase in terrestrial carbon storage after the last glacial maximum.Global Ecol. Biogeog. Lett.,3, 67–76.CrossRefGoogle Scholar
  44. Prentice, K. C., and I. Y. Fung, 1990: The sensitivity of terrestrial carbon storage to climate change.Nature,346, 48–51.CrossRefGoogle Scholar
  45. Ridgwell, A. J., 2001: Glacial-interglacial perturbations in the global carbon cycle. Ph. D. dissertation, Univ. of East Anglia at Norwich, UK. Available at e114/ridgwell_2001. pdfGoogle Scholar
  46. Schlesinger, W. H., 1991:Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, CA, USA, 443pp.Google Scholar
  47. Shackleton, N. J., 1977: Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles.The Fate of Fossil Fuel CO2 in the Oceans, N. R. Andersen and A. Malahoff, Eds., Plenum, New York, 401–428.Google Scholar
  48. Sigman, D. M., and E. A. Boyle, 2000: Glacial/interglacial variations in atmospheric carbon dioxide.Nature,407, 859–869.CrossRefGoogle Scholar
  49. Smith, H. J., H. Fischer, M. Wahlen, D. Mastroianni, and others, 1999: Dual modes of the carbon cycle since the Last Glacial Maximum.Nature,400, 248–250.CrossRefGoogle Scholar
  50. Spero, H. J., and D. W. Lea, 2002: The cause of carbon isotope minimum events on glacial terminations.Science,296, 522–525.CrossRefGoogle Scholar
  51. Stephens, B. B., and R. F. Keeling, 2000: The influence of Antarctic sea ice on glacial-interglacial CO2 variations.Nature,404, 171–174.CrossRefGoogle Scholar
  52. Sundquist, E. T., 1993: The global carbon dioxide budget.Science,259, 934–941.Google Scholar
  53. van Campo, E., J. Guiot, and C. H. Peng, 1993: A databased re-appraisal of the terrestrial carbon budget at the Last Glacial Maximum.Global Planet. Change,8, 189–201.CrossRefGoogle Scholar

Copyright information

© Advances in Atmospheric Sciences 2003

Authors and Affiliations

  1. 1.Department of Meteorology and Earth System Science Interdisciplinary CenterUniversity of MarylandUSA

Personalised recommendations