Folia Geobotanica

, Volume 34, Issue 4, pp 471–481 | Cite as

Copper resistance and genetic diversity inLychnis alpina (Caryophyllaceae) populations on mining sites

  • Inger NordalEmail author
  • Kirsten Borse Haraldsen
  • Åshild Ergon
  • Aud B. Eriksen


Copper mine populations ofLychnis alpina are shown to be significantly more resistant to increased copper concentrations compared to populations on normal soils. Data obtained from isozyme polymorphism analysis revealed that although the copper populations display considerable variation, they have lower genetic variability than the populations from normal soils, both on a local and a global scale, thus indicating a slight founder effect. Copper ecotypes inL. alpina have originated independently. The results are similar to what recently have been reported in heavy metal tolerant populations ofArmeria maritima.


Copper ecotypes Genetic diversity Founder effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradshaw A.D., McNeilly T. &Putwain P.D. (1990): The essential qualities. In:Shaw A.J. (ed.),Heavy metal tolerance in plants, evolutionary aspects, CRC Press Inc., Boca Raton, pp. 323–334.Google Scholar
  2. Brooks R.R. &Crooks H.M. (1980): Studies on uptake of heavy metals by the Scandinavian “kisplanten”Lychnis alpina andSilene dioica.Pl. & Soil 54: 419–496CrossRefGoogle Scholar
  3. Bush E.J. &Barrett S.C.H. (1993): Genetics of mine invasions byDeschampsia cespitosa (Poaceae).Canad. J. Bot. 71: 1336–1348.CrossRefGoogle Scholar
  4. Bøcher T.W. (1963): Experimental and cytological studies on plants species. VIII. Racial differentiation in amphi-atlanticViscaria alpina.Kongel. Danske Vidensk. Selsk. Biol. Skr. 11 (6): 1–33.Google Scholar
  5. Ducousso A., Petit D., Valero M. &Vernet P. (1990): Genetic variation between and within populations of a perennial grass:Arrhenatherum elatius.Heredity 65: 179–188.CrossRefGoogle Scholar
  6. Ergon Å. (1993):Ecotypic copper resistance in Lychnis alpinaL. M. Sc. thesis, University of Oslo, Oslo.Google Scholar
  7. Eriksen A.B., Njøs A., Nilsen S. &Sørbø J.G. (1985): Effects of lime, triple superphosphate, urea and night temperature on the yield of two varieties of wheat (Triticum aestivum L.) grown in soils from Antsirabe, Madagascar,Meld. Norg. Landbrukshøgskole 64: 1–35.Google Scholar
  8. Ernst W.H.O. (1996): Phytotoxicity of heavy metals. In:Rodriguez-Barrueco C. (ed.),Fertilisers and environment, Kluwer Acad. Publ., Dordrecht, pp. 423–430Google Scholar
  9. Ernst W.H.O. (1998): Population dynamics of plants under exposure and the selection of resistance. In:Schürmann G. &Markert B. (eds.),Ecotoxicology, John Wiley & Sons, Inc. and Spectrum Akademischer Verlag, Heidelberg, pp. 117–132.Google Scholar
  10. Ernst W.H.O., Schat H. &Verkleij J.A.C. (1990): Evolutionary biology of metal resistance inSilene vulgaris.Evol. Trends Pl. 4: 45–51.Google Scholar
  11. Hamrick J.L. &Godt M.J.W. (1990): Allozyme diversity in plant species. In:Brown A.H.D., Clegg M.T. Kahler A.L. &Weir B.S. (eds.),Plant population genetics, breeding and genetic resources, Sinauer Ass. Inc. Publ., Sunderland, pp. 43–63.Google Scholar
  12. Haraldsen K.B. &Wesenberg J. (1993): Population genetic analysis of an amphi-Atlantic species:Lychnis alpina (Caryophyllaceae).Nord. J. Bot. 13: 377–387.CrossRefGoogle Scholar
  13. Hultén E. &Fries M. (1986):Atlas of north European vascular plants north of the tropic cancer, Koeltz Scientific Books, Königstein.Google Scholar
  14. Levitt J. (1980):Response of plants to environmental stress. Ed. 2. Academic Press, New York.Google Scholar
  15. Lolkema P.C., Doornhof M. &Ernst W.H.O. (1986): Interaction between a copper-tolerant and a copper-sensitive population ofSilene cucubalus.Physiol. Pl. 67: 654–658.CrossRefGoogle Scholar
  16. Nei M. (1977): F-statistics and analysis of genetic diversity in subdivived populations.Ann. Human Genet. 41: 225–233.CrossRefGoogle Scholar
  17. Neumann D., Nieden U., Schwieger W., Leopold J. &Lichtenberger O. (1997): Heavy metal tolerance ofMinuartia verna.J. Pl. Physiol. 151: 101–108.Google Scholar
  18. Parker R.E. (1979):Introductory statistics for biology. Ed. 2. Edward Arnold, London.Google Scholar
  19. Petersen P.M. &Philipp M. (1986): Growth and reproduction ofViscaria alpina on Greenland with high and low copper concentration.Arctic Alpine Res. 18: 73–82.CrossRefGoogle Scholar
  20. Proctor J. &Johnston W.R. (1977):Lychnis alpina L. in Britain.Watsonia 11: 199–204.Google Scholar
  21. Rune O. (1953): Plant life on serpentines and related rocks in the north of Sweden.Acta Phytogegr. Suecica 31: 1–139.Google Scholar
  22. Schat H., Kuiper E., ten Bookum W.M. &Vooijs R. (1993): A general model for the genetic control of copper tolerance inSilene vulgaris: evidence from crosses between plants from different tolerant populations.Heredity 70: 142–147.CrossRefGoogle Scholar
  23. Schat H., Sharma S.S. &Vooijs R. (1997): Heavy metal-induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype ofSilene vulgaris.Physiol. Pl. 101: 477–482.CrossRefGoogle Scholar
  24. Schat H. &Ten Bokum W.M. (1992): Genetic control of copper tolerance inSilene vulgaris.Heredity 68: 219–229.CrossRefGoogle Scholar
  25. Schat H. &Vooijs R. (1997): Multiple tolerance and co-tolerance to heavy metals inSilene vulgaris: a co-segregation analysis.New Phytol. 136: 489–496.CrossRefGoogle Scholar
  26. Schat H., Vooijs R. &Kuiper E. (1996): Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies ofSilene vulgaris.Evolution 50: 1888–1895.CrossRefGoogle Scholar
  27. Selander R.K. &Yang S.Y. (1969): Protein polymorphism and genetic heterozygosity in wild population of house mouse (Mus musculus).Genetics 63: 653–657.PubMedGoogle Scholar
  28. Soltis D.E., Haufler C.H., Darrow D.C. &Gastony G.J. (1983): Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules.Amer. Fern J. 73: 9–27.CrossRefGoogle Scholar
  29. Swofford D.L. &Selander R.B. (1981): BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics.J. Heredity 72: 281–283.Google Scholar
  30. Vekemans X. &Lefèbvre C. (1997): On the evolution of heavy-metal tolerant populations inArmeria maritima: evidence from allozyme variation and reproductive barriers.J. Evol. Biol. 10: 175–191.CrossRefGoogle Scholar
  31. Vogt T. &Braadlie O. (1942): Geokjemisk og geobotanisk malmleting. IV. Plantevekst og jordbunn ved Rørosmalmene (Geochemical and geobotanical search for ore IV. Plant growth and soil at the Røros Mines).Kongel. Norske Vidensk. Selsk. Forh. 15(7): 25–28.Google Scholar
  32. Wendel J.F. &Weeden N.F. (1989): Visualization and interpretation of plant isozymes. In:Soltis D.E. &Soltis P.S. (eds.),Isozymes in plant biology, Chapman and Hall, London, pp. 5–45.Google Scholar
  33. Wesenberg J. (1999):Lychnis alpina. In:Jonsell B. (ed.),Flora Nordica I, Almquist & Wicksell Tryckeri, Stockholm (in press).Google Scholar
  34. Wright S. (1965): The interpretation of population structure by F-statistics with special regard to systems of mating.Evolution 19: 395–420.CrossRefGoogle Scholar
  35. Wright S. (1978):Evolution and the genetics of populations. 4. Variability within and among natural populations. Univ. Chicago Press, Chicago and London.Google Scholar
  36. Wu L., Bradshaw A.D. &Thurman D.A. (1975): The potential for evolution of heavy metal tolerance in plants III. The rapid evolution of copper tolerance inAgrostis stolonifera, Heredity 34: 165–178.CrossRefGoogle Scholar

Copyright information

© Institute of Botany 1999

Authors and Affiliations

  • Inger Nordal
    • 1
    Email author
  • Kirsten Borse Haraldsen
    • 1
  • Åshild Ergon
    • 2
  • Aud B. Eriksen
    • 1
  1. 1.Department of BiologyUniversity of OsloOsloNorway
  2. 2.Norwegian Crop Research InstitutePlant Protection CentreÅsNorway

Personalised recommendations