Advertisement

Bulletin of Materials Science

, Volume 29, Issue 5, pp 505–511 | Cite as

Optimizing growth conditions for electroless deposition of Au films on Si(111) substrates

  • BhuvAna
  • G. U. KulkarniEmail author
Thin Films

Abstract

Electroless deposition of Au films on Si(111) substrates from fluorinated-aurate plating solutions has been carried out at varying concentrations, deposition durations as well as bath temperatures, and the resulting films were characterized by X-ray diffraction, optical profilometry, atomic force microscopy and scanning electron microscopy. Depositions carried out with dilute plating solutions (< 0.1 mM) at 28°C for 30 min produce epitaxial films exhibiting a prominent Au(111) peak in the diffraction patterns, while higher concentrations or temperatures, or longer durations yield polycrystalline films. In both epitaxial and polycrystalline growth regimes, the film thickness increases linearly with time, however, in the latter case, at a rate an order of magnitude higher. Interestingly, the surface roughness measured using atomic force microscopy shows a similar trend. On subjecting to annealing at 250°C, the roughness of the film decreases gradually. Addition of poly (vinylpyrrolidone) to the plating solution is shown to produce a X-ray amorphous film with nanoparticulates capped with the polymer as evidenced by the core-level photoelectron spectrum. Nanoindentation using AFM has shown the hardness of the films to be much higher (∼ 2.19 GPa) than the bulk value.

Keywords

Electroless deposition nanoindentation surface morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnault J C, Mosser A, Zamfirescu M and Pelletier H 2002J. Mater. Res. 17 1258CrossRefGoogle Scholar
  2. Furukawa S and Mehregany M 1996Sensors & Actuators A56 261Google Scholar
  3. Gorostiza P, Servat J, Morante J R and Sanz F 1996Thin Solid Films 275 12CrossRefGoogle Scholar
  4. Gorostiza P, Diaz R, Servat J, Sanz F and Morante J R 1997J. Electrochem. Soc. 144 909CrossRefGoogle Scholar
  5. Gorostiza P, Kulandainathan M, Diaz R, Sanz F, Allongue P and Morantes J R 2000J. Electrochem. Soc. 147 1026CrossRefGoogle Scholar
  6. Homma T, Wade C P and Chidsey CED 1998J. Phys. Chem. B102 7919Google Scholar
  7. Hou Z, Abbott N L and Stroeve P 1998Langmuir 14 3287CrossRefGoogle Scholar
  8. Hou Z, Dante S, Abbott N L and Stroeve P 1999Langmuir 15 3011CrossRefGoogle Scholar
  9. Kalkan A K and Fonash S J 2005J. Phys. Chem. B109 20779Google Scholar
  10. Khoperia T N, Tabatadze T J and Zedgenidze T L 1997Electrochimica Acta 42 3049CrossRefGoogle Scholar
  11. Kobayashi T, Ishibashi J, Mononobe S, Ohtsu M and Honma H 2000J. Electrochem. Soc. 147 1046CrossRefGoogle Scholar
  12. Krikshtopaitis I B and Kudzhmauskaite Z P 1971Elektrokhimiya 7 1679Google Scholar
  13. Kuwahara Y, Natatani S, Takahasi M, Aono M and Takahashi T 1994Surf. Sci. 310 226CrossRefGoogle Scholar
  14. Kuznetsov G V, Skryshevsky V A, Vdovenkova T A, Tsyganova A I, Gorostiza P and Sanz F 2001J. Electrochem. Soc. 148 C528CrossRefGoogle Scholar
  15. Li L B, An M Z and Wu G H 2005Mater. Chem. Phys. 94 159CrossRefGoogle Scholar
  16. Magagnin L, Maboudin R and Carraro C 2001Electrochem. Solid State Lett. 4 C5CrossRefGoogle Scholar
  17. Magagnin L, Maboudian R and Carraro C 2002J. Phys. Chem. B106 401Google Scholar
  18. Magagnin L, Maboudian R and Carraro C 2003Thin Solid Films 434 100CrossRefGoogle Scholar
  19. Mallory G O and Hajdu J B (eds) 1990Electroless plating: Fundamentals and applications (Orlando, Florida: AESFS)Google Scholar
  20. Morinaga H, Suyama M and Ohmi T 1994J. Electrochem. Soc. 141 2834CrossRefGoogle Scholar
  21. Nagahara L A, Ohmori T, Hashimoto K and Fujishima A 1993J. Vac. Sci. Technol. A11 763Google Scholar
  22. Norga G J, Platero M, Black K A, Reddy A J, Michel J and Kimerling L C 1997J. Electrochem. Soc. 144 2801CrossRefGoogle Scholar
  23. Okinaka Y and Hoshino M 1998Gold Bull. 31 3Google Scholar
  24. Osaka T, Takano N and Yokoshima T 2003Surf. Coating Tech. 169-170 1CrossRefGoogle Scholar
  25. Pearlstein F and Lowenheim F A (ed.) 1974Modern electroplating (New York: Wiley)Google Scholar
  26. Salmeron M, Folch A, Neubauer G, Tomitori M, Ogletree D F and Kolbe W 1992Langmuir 8 2832CrossRefGoogle Scholar
  27. Shacham-Diamond Y, Inberg A, Sverdlov Y and Croitoru N 2000J. Electrochem. Soc. 147 3345CrossRefGoogle Scholar
  28. Šiller L, Peltekis N, Krishnamurthy S and Chao Y 2005Appl. Phys. Lett. 86 221912CrossRefGoogle Scholar
  29. Sugimura H and Nakagiri N 1995J. Vac. Sci. Technol. B13 1933Google Scholar
  30. Tangyunyong P, Thomas R C, Houston J E, Michalske T A, Crooks R M and Howard A J 1993Phys. Rev. Lett. 71 3319CrossRefGoogle Scholar
  31. Tsunoyama H, Sakurai H, Ichikuni N, Negishi Y and Tsukuda T 2004Langmuir 20 11293CrossRefGoogle Scholar
  32. Volinsky A A, Moody N R and Gerberich W W 2004J. Mater. Res. 19 2650CrossRefGoogle Scholar
  33. Warren Set al 2002Surf. Sci. 496 287CrossRefGoogle Scholar

Copyright information

© The Indian Academy of Sciences 2006

Authors and Affiliations

  1. 1.Chemistry and Physics of Materials Unit and DST Unit on NanoscienceJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations