Cell and Tissue Research

, Volume 271, Issue 3, pp 429–439 | Cite as

The Leydig cell of the human testis —A new member of the diffuse neuroendocrine system

  • M. S. Davidoff
  • W. Schulze
  • R. Middendorff
  • A. -F. Holstein
Article

Abstract

A number of marker substances for neuronal and neuroendocrine cells have been demonstrated in the cytoplasm of the interstitial Leydig cells of human testes using basic immunocytochemical methods and some of their modifications. We were able to reveal immunoreactivity for enzymes involved in the synthesis of the catecholamines dopamine and noradrenaline (tryosine hydroxylase, aromatic L-amino acid decarboxylase, dopamine-β-hydroxylase), for the indolamine 5-hydroxytryptamine (serotonin), as well as for a number of wellknown neuronal markers such as the neurofilament protein 200, synaptophysin, chromogranin A+B, the neural cell-adhesion molecule (N-CAM), the microtubule-associated protein (MAP-2), and the calcium-binding proteins: S-100, calbindin and parvalbumin. Immunoreactivity for these substances was found in the majority of the interstitial cells although differences in the staining intensity among the individual Leydig cells and among Leydig cells from different patients were observed. At the electron-microscopic level the Leydig cell cytoplasm was seen to contain microtubules, intermediate- and microfilaments as well as clear (40–60 nm) and dense-core (100–300 nm) vesicles, providing a morphological correlate for some of the immunocytochemical results. Although individual marker substances are not absolutely specific for nerve and neuroendocrine cells, the results obtained, together with the already established neuronspecific enolase-, substance P-, methionine-enkephalinand proopiomelanocortin (POMC)-derived peptide-like immunoreactivity, provide strong evidence for the neuroendocrine (paraneuronal, APUD-like) nature of the Leydig cells of the human testis.

Key words

Leydig cells Testis Neuroendocrine cell markers Immunocytochemistry Neuroendocrine/paraneuronal cells Human 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelova PA, Davidoff MS, Kanchev LN (1991a) Substance P inhibits testosterone secretion of isolated Leydig cells. Andrologia 23:325–327PubMedGoogle Scholar
  2. Angelova P, Davidoff M, Baleva K, Staykova M (1991b) Substance P and neuron-specific enolase-like immunoreactivity of rodent Leydig cells in tissue section and cell culture. Acta Histochem 91:131–139PubMedGoogle Scholar
  3. Bardin CW, Chen C-LC, Morris PL, Gerendai I, Boitani C, Liotta AS, Margioris A, Krieger DT (1987) Proopiomelanocortin-derived peptides in testis, ovary, and tissues of reproduction. Rec Progr Horm Res 43:1–28PubMedGoogle Scholar
  4. Bardin CW, Morris PL, Chen CLC (1990) Autocrine and paracrine gonadal peptides. In: Bouchard P, Haour F, Franchimont P, Schatz B (eds) Recent Progress on GnRH and Gonadal Peptides. Elsevier, Paris, pp 367–382Google Scholar
  5. Benahmed M, Esposito G, Sordoillet C, Peretti E de, Chauvin MA, Ghiglieri C, Revol A, Morera AM (1989) Transforming growth factor β and its peptides in the testis: an intragonadal polypeptide control system. In: Serio M (ed) Serono Symposia Publications, vol 53, Perspectives in Andrology. Raven Press, pp 191–201Google Scholar
  6. Bergh A, Cajander S (1990) Immunohistochemical localization of inhibin-α in the testes of normal men and in men with testicular disorders. Int J Androl 13:463–469PubMedCrossRefGoogle Scholar
  7. Braun K (1990) Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. Progr Histochem Cytochem 21:1–64Google Scholar
  8. Browne ES, Flasch MV, Sohal GS, Bhalla VK (1990) Gonadotropin receptor occupancy and stimulation of cAMP and testosterone production by purified Leydig cells: critical dependence on cell concentration. Mol Cell Endocrinol 70:49–63PubMedCrossRefGoogle Scholar
  9. Cecio A, Vittoria A (1989) Urogenital paraneurons in several mammals. Arch Histol Cytol 52 [Suppl]:403–413PubMedCrossRefGoogle Scholar
  10. Celio MR (1990) Calbindin D-28K and parvalbumin in the rat nervous system. Neuroscience 35:375–475PubMedCrossRefGoogle Scholar
  11. Chiwakata C, Brackmann B, Hunt N, Davidoff MS, Schulze W, Ivell R (1991) Tachykinin (substance P) gene expression in Leydig cells of the human and mouse testis. Endocrinology 128:2441–2448PubMedGoogle Scholar
  12. Culler MD (1990) Role of Leydig cells and endogenous inhibin in regulating pulsatile gonadotropin secretion in the adult male rat. Endocrinology 127:2540–2550PubMedGoogle Scholar
  13. Davidoff MS, Schulze W (1990) Combination of the peroxidase anti-peroxidase (PAP)- and avidin-biotin-peroxidase complex (ABC)-techniques: an amplification alternative in immunocytochemical staining. Histochemistry 93:531–536PubMedCrossRefGoogle Scholar
  14. Davidoff MS, Breucker H, Holstein AF, Seidl K (1990) Cellular architecture of the lamina propria of human seminiferous tubules. Cell Tissue Res 262:253–261PubMedCrossRefGoogle Scholar
  15. De Kretser DM (1987) Local regulation of testicular function. Int Rev Cytol 109:89–112PubMedGoogle Scholar
  16. Deschepper CF, Mellon SH, Cumin F, Baxter JD (1986) Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc Natl Acad Sci USA 83:7552–7556PubMedCrossRefGoogle Scholar
  17. Dráberová E, Dráber P, Viklicky V (1986) Cellular distribution of protein related to neuronal microtubule-associated protein MAP-2 in Leydig cells. Cell Biol Int Rep 10:881–890PubMedCrossRefGoogle Scholar
  18. Eik-Nes KB (1975) Biosynthesis and secretion of testicular steroids. In: Greep RO, Astwood EB, Hamilton DW, Geiger S (eds) Handbook of Physiology. American Physiol Soc, Washington DC, pp 95–115Google Scholar
  19. Eskeland NL, Molineaux CJ, Schachter BS (1992) Regulation of β-endorphin secretion by corticotropin-releasing factor in the intact rat testis. Endocrinology 130:1173–1179PubMedCrossRefGoogle Scholar
  20. Fabbri A, Knox G, Buczko E, Dufau ML (1988) β-Endorphin production by the fetal Leydig cell: regulation and implications for paracrine control of Sertoli cell function. Endocrinology 122:749–755PubMedGoogle Scholar
  21. Fujita T (1989) Present status of paraneuron concept. Arch Histol Cytol 52 [Suppl]:1–8PubMedCrossRefGoogle Scholar
  22. Gerendai I, Saha C, Thau R, Bardin CW (1984) Do testicular opiates regulate Leydig cell function? Endocrinology 115:1645–1647PubMedGoogle Scholar
  23. Gobbi H, Barbosa AJA, Teixeira VPA, Almeida HO (1991) Immunocytochemical identification of neuroendocrine markers in human cardiac paraganglion-like structures. Histochemistry 95:337–340PubMedCrossRefGoogle Scholar
  24. Gonzales-Manchon C, Vale W (1989) Activin-A, inhibin and transforming growth factor-β modulate growth of two gonadal cell lines. Endocrinology 125:1666–1672Google Scholar
  25. Griswold MD (1988) Protein secretions of Sertoli cells. Int Rev Cytol 110:133–156PubMedGoogle Scholar
  26. Gu J, Polak JM, Probert L, Islam KN, Marangos PJ, Mina S, Adrian TE, McGregor GP, O'Shaughnassy, Bloom S (1983) Peptidergic innervation of the human male genital tract. J Urol 130:386–391PubMedGoogle Scholar
  27. Guessi L, Isidort A, Bolotti M, Altamura S, Ulisse S, Jannini EA, Fabbri A, Spera G (1989) Identification of immunoreactive gastrin-releasing peptide-related substances in adult rat Leydig cells. Endocrinology 124:558–560Google Scholar
  28. Hasegawa H, Kobayashi T, Inoue F, Ichiama A (1989) Intracellular metabolism of biogenic amines in paraneurons. Arch Histol Cytol 52 [Suppl]:69–74PubMedCrossRefGoogle Scholar
  29. Holgate CS, Jackson PS, Cowen PN, Bird CC (1983) Immunogold-silver staining: a new method of immunostaining with enhanced sensitivity. J Histochem Cytochem 31:939–944Google Scholar
  30. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMedGoogle Scholar
  31. Ivell R (1992) “All that glisters is not gold”—common testis gene transcripts are not always what they seem. Int J Androl 15:85–92PubMedCrossRefGoogle Scholar
  32. Ivell R, Furuya K, Nollmeyer D, Ungefroren H, Chiwakata C (1990) The expression of neuropeptide genes in the mammalian testis. In: Isidori A, Fabbri A, Dufau ML (eds). Hormonal Communicating in the Testis, vol 70. Raven Press, pp 45–55Google Scholar
  33. Iwanaga T, Takahashi Y, Fujita T (1989) Immunohistochemistry of neuron-specific and glia-specific proteins. Arch Histol Cytol 52 [Suppl]:pp 13–24PubMedCrossRefGoogle Scholar
  34. Kägi U, Chafouleas JG, Norman AW, Heizmann CW (1988) Developmental appearance of the Ca-binding proteins parvalbumin, calbindin D-28K, S 100 protein and calmodulin during testicular development in the rat. Cell Tissue Res 353:359–365Google Scholar
  35. Khanum A, Dufau ML (1988) Angiotensin II receptors and inhibitory actions in Leydig cells. J Biol Chem 263:5070–5074PubMedGoogle Scholar
  36. Komori K, Fujii T, Karasawa N, Yamada K, Nagatsu I (1991) Some neurons of the mouse cortex and caudo-putamen contain aromatic L-amino acid decarboxylase but not monoamines. Acta Histochem Cytochem 24:571–578Google Scholar
  37. Lacaze-Masmonteil T, De Keyzer Y, Luton JP, Kahn A, Bertagna X (1987) Characterization of proopiomelanocortin transcripts in human nonpituitary tissues. Proc Natl Acad Sci USA 84:7261–7265PubMedCrossRefGoogle Scholar
  38. Langley K, Gratzl M (1991) Neural cell adhesion molecule NCAM in neural and endocrine cells. In: Gratzl M and Langley K (eds) Markers for Neural and Endocrine Cells. Molecular and Cell Biology, Diagnostic Applications. Verlag Chemie, Weinheim New York Basel, pp 133–178Google Scholar
  39. Lauke H, Behrens K, Holstein AF (1989) Leydig cell mitoses in human testes bearing early germ cell tumors. Cell Tissue Res 255:475–479PubMedCrossRefGoogle Scholar
  40. Mayerhofer A, Bartke A, Steger RW (1989) Catecholamine effects on testicular testosterone production in the gonadally active and the gonadally regressed adult golden hamster. Biol Reprod 40:752–761PubMedCrossRefGoogle Scholar
  41. Mayerhofer A, Calandra RS, Bartke A (1991) Cyclic adenosine monophosphate (cAMP) does not mediate the stimulatory action of norepinephrine on testosterone production by testis of the golden hamster. Life Sci 48:1109–1114PubMedCrossRefGoogle Scholar
  42. Mayerhofer A, Seidl K, Lahr G, Gratzl M (1992) Expression of the neural cell adhesion molecules (NCAMs) in the testis. Verh Anat Ges, Anat Anz [Suppl] 174:50Google Scholar
  43. Melner MH (1986) My favorite cell. Testicular Leydig cells: differentiated cells responding to multiple hormonal control and producing varied products. Bioessays 5:228–231PubMedCrossRefGoogle Scholar
  44. Michetti F, Lauriola L, Rende M, Stolfi V, Battaglia F, Coccia D (1985) S-100 protein in the testis. An immunochemical and immunohistochemical study. Cell Tissue Res 240:137–142PubMedCrossRefGoogle Scholar
  45. Moller CJ, Byskov AG, Roth J, Celis JE, Bock E (1991) NCAM in developing mouse gonads and ducts. Anat Embryol 184:541–548PubMedCrossRefGoogle Scholar
  46. Morera AM, Benahmed M, Cochet C, Chauvin MA, Chambaz E, Revol A (1987) A TGFβ-like peptide is a possible intratesticular modulator of steroidogenesis. Ann N Y Acad Sci 513:494–496CrossRefGoogle Scholar
  47. Navone F, Jahn R, DiGioia G, Stukenbrok H, Greengard P, DeCamilli P (1986) Protein p38: an integral protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527PubMedCrossRefGoogle Scholar
  48. Niemi M, Sharpe RM, Brown WRA (1986) Macrophages in the interstitial tissue of the rat testis. Cell Tissue Res 243:337–344PubMedCrossRefGoogle Scholar
  49. O'Connor DT, Klein RL, Thureson-Klein AK, Barbosa JA (1991) Chromagranin A: localization and stoichiometry in large dense core catecholamine storage vesicles from sympathetic nerve. Brain Res 567:188–196PubMedCrossRefGoogle Scholar
  50. Pearse AGE (1986) The diffuse neuroendocrine system: peptides, amines, placodes and the APUD theory. In: Hökfelt T, Fuxe K, Pernow B (eds). Progress in Brain Research, vol 68. Elsevier, Amsterdam, pp 25–31Google Scholar
  51. Pearse AGE (1987) The diffuse neuroendocrine system and the diencephalon. In: Scharrer B, Korf H-W Hartwig H-G (eds) Functional Morphology of Neuroendocrine Systems. Springer, Berlin Heidelberg New York, pp 133–138Google Scholar
  52. Polak JM, Bloom SR (1986) Immunocytochemistry of the diffuse neuroendocrine system. In: Polak JM, Van Noorden S (eds). Immunocytochemistry. Modern Methods and Applications, 2nd edn. Wright, Bristol, pp 328–348Google Scholar
  53. Redecker P, Jörns A, Jahn R, Grube D (1991) Synaptophysin immunoreactivity in the mammalian pancreas. Cell Tissue Res 264:461–467PubMedCrossRefGoogle Scholar
  54. Saint-Pol P, Peyrat JP, Engelhardt RP, Leroy-Martin B (1986) Immunohistochemical localization of enkephalins in adult rat testis: evidence for a gonadotropin control. Andrologia 18:485–488PubMedGoogle Scholar
  55. Schulze C (1984) Sertoli cells and Leydig cells in man. Adv Anat Embryiol Cell Biol 88:1–104Google Scholar
  56. Schulze W, Davidoff MS, Holstein AF (1987a) Are Leydig cells of neural origin? Substance P-like immunoreactivity in human testicular tissue. Acta Endocrinol 115:373–377PubMedGoogle Scholar
  57. Schulze W, Davidoff MS, Holstein AF, Schirren C (1987b) Processing of testicular biopsies—fixed in Stieve's solution for visualization of substance P- and methionine enkephalin-immunoreactivity in Leydig cells. Andrologia 19:419–422PubMedGoogle Scholar
  58. Schulze W, Davidoff MS, Ivell R, Holstein AF (1991) Neuron-specific enolase-like immunoreactivity in human Leydig cells Andrologia 23:279–283PubMedCrossRefGoogle Scholar
  59. Skinner MK (1991) Cell-cell interactions in the testis. Endocr Rev 12:45–77PubMedGoogle Scholar
  60. Sordoillet C, Chauvin MA, Deperetti E, Morera AM, Benahmed M (1991) Epidermal growth factor directly stimulates steroidogenesis in primary cultures of porcine Leydig cells—Actions and sites of actions. Endocrinology 128:2160–2168PubMedGoogle Scholar
  61. Stalker A, Hermo L, Antakly A (1991) Subcellular distribution of [3H]-dexamethasone mesylate binding sites in Leydig cells using electron microscope autoradiography. Am J Anat 190:19–30PubMedCrossRefGoogle Scholar
  62. Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody method of immunohistochemistry. Preparation and properties of soluble antigen-natibody complex (horse-radish peroxidase anti-peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333PubMedGoogle Scholar
  63. Tähkä KM (1986) Current aspects of Leydig cells function and its regulation. J Reprod Fert 78:367–380Google Scholar
  64. Takei N, Kondo J, Nagaike K, Ohsawa K, Kato K, Kohsaka S (1991) Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J Neurochem 57:1178–1184PubMedCrossRefGoogle Scholar
  65. Teerds KJ, De Rooji DG, Rommerts FFG, Tweel I van der, Wensing CJG (1989) Turnover time of Leydig cells and other interstitial cells in testes of adult rats. Arch Androl 23:105–111PubMedCrossRefGoogle Scholar
  66. Tinajero JC, Fabbri A, Dufau ML (1992) Regulation of corticotropin-releasing factor secretion from Leydig cells by serotonin. Endocrinology 130:1780–1788PubMedCrossRefGoogle Scholar
  67. Tsong SD, Phillips D, Halmi N, Liotta AS, Margioris A, Bardin CW, Krieger DT (1982) ACTH and β-endorphin-related peptides are present in multiple sites in the reproductive tract of male rat. Endocrinology 110:2204–2206PubMedCrossRefGoogle Scholar
  68. Vernon RB, Sage H (1989) The calcium-binding protein SPARC is secreted by Leydig and Sertoli cells of the adult mouse testis. Biol Reprod 40:1329–1340PubMedCrossRefGoogle Scholar
  69. Wiedenmann B, Huttner WB (1989) Synaptophysin and chromogranins/secretogranins—widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch [B] 58:95–121Google Scholar
  70. Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83:3500–3504PubMedCrossRefGoogle Scholar
  71. Zieher LM, Debeljuk L, Iturriza F, Mancini RE (1971) Biogenic amine concentration in testis of rats at different ages. Endocrinology 88:351–354PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. S. Davidoff
    • 1
  • W. Schulze
    • 2
  • R. Middendorff
    • 3
  • A. -F. Holstein
    • 3
  1. 1.Institute of Cell Biology and MorphologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Abteilung für AndrologieUniversitäts-Krankenhaus EppendorfHamburg 20Germany
  3. 3.Anatomisches InstitutUniversitäts-Krankenhaus EppendorfHamburg 20Germany

Personalised recommendations