Metallurgical Transactions B

, Volume 6, Issue 2, pp 215–221 | Cite as

The oxygen potential of the systems Fe+FeCr2O4+Cr2O3 and Fe+FeV2O4+V2O3 in the temperature range 750–1600°C

  • K. T. Jacob
  • C. B. Alcock
Physical Chemistry

Abstract

From electromotive force (emf) measurements using solid oxide galvanic cells incorporating ZrO2-CaO and ThO2−YO1.5 electrolytes, the chemical potentials of oxygen over the systems Fe+FeCr2O4+Cr2O3 and Fe+FeV2O4+V2O3 were calculated. The values may be represented by the equations:
$$\begin{gathered} 2Fe\left( {s,1} \right) + O_2 \left( g \right) + 2Cr_2 O_3 \left( s \right) \to 2FeCr_2 O_4 \left( s \right) \hfill \\ \Delta \mu _{O_2 } = - 151,400 + 34.7T\left( { \pm 300} \right) cal \hfill \\ = - 633,400 + 145.5T\left( { \pm 1250} \right) J \left( {750 to 1536^\circ C} \right) \hfill \\ \Delta \mu _{O_2 } = - 158,000 + 38.4T\left( { \pm 300} \right) cal \hfill \\ = - 661,000 + 160.5T\left( { \pm 1250} \right) J \left( {1536 to 1700^\circ C} \right) \hfill \\ 2Fe\left( {s,1} \right) + O_2 \left( g \right) + 2V_2 O_3 \left( s \right) \to 2FeV_2 O_4 \left( s \right) \hfill \\ \Delta \mu _{O_2 } = - 138,000 + 29.8T\left( { \pm 300} \right) cal \hfill \\ = - 577,500 + 124.7T\left( { \pm 1250} \right) J \left( {750 to 1536^\circ C} \right) \hfill \\ \Delta \mu _{O_2 } = - 144,600 + 33.45T\left( { \pm 300} \right) cal \hfill \\ = - 605,100 + 140.0T\left( { \pm 1250} \right) J \left( {1536 to 1700^\circ C} \right) \hfill \\ \end{gathered} $$
.

At the oxygen potentials corresponding to Fe+FeCr2O4+Cr2O3 equilibria, the electronic contribution to the conductivity of ZrO2−CaO electrolyte was found to affect the measured emf. Application of a small 60 cycle A.C. voltage with an amplitude of 50 mv across the cell terminals reduced the time required to attain equilibrium at temperatures between 750 to 950°C by approximately a factor of two. The second law entropy of iron chromite obtained in this study is in good agreement with that calculated from thermal data. The entropies of formation of these spinel phases from the component oxides can be correlated to cation distribution and crystal field theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. G. Boericke and W. M. BangertBur. Mines (U.S.) Rep. Invest., 1945, N. 3813.Google Scholar
  2. 2.
    W. Kunnmann, D. B. Rogers, and A. Wold:J. Phys. Chem. Solids, 1963, vol. 24, p. 1535–38.CrossRefGoogle Scholar
  3. 3.
    T. Katsura and A. Muan:Trans. TMS-AIME, 1964, vol. 230, p. 77.Google Scholar
  4. 4.
    I. A. Novokhatski and L. M. Lenev:Zh. Neorg. Khim., 1966, vol. 11, p. 2014.Google Scholar
  5. 5.
    H. M. Chen and J. Chipman:Trans. ASM, 1947, vol. 38, p. 70–113.Google Scholar
  6. 6.
    J. D. Tretjakow and H. Schmalzried:Ber. Bunsenges. Phys. Chem., 1965, vol. 69, p. 396.Google Scholar
  7. 7.
    T. N. Rezukhina, V. A. Levitski, and B. A. Istomin:Electrochemistry (Russian), 1965, vol. 1, p. 467–71.Google Scholar
  8. 8.
    R. J. Fruehan:Trans. TMS-AIME, 1969, vol. 245, p. 1215–18.Google Scholar
  9. 9.
    C. H. Shomate:Ind. Eng. Chem., 1944, vol. 36, p. 910.CrossRefGoogle Scholar
  10. 10.
    B. F. Naylors:Ind. Eng. Chem., 1944, vol. 46, p. 933.CrossRefGoogle Scholar
  11. 11.
    J. Chipman and M. Dastur:Trans. AIME, 1951, vol. 191, p. 111–15.Google Scholar
  12. 12.
    R. A. Karasev, A. Y Polyakov, and A. M. Samarin:Dokl. Akad. Nauk SSSR, 1952, vol. 85, pp. 1313–16.Google Scholar
  13. 13.
    K. Narita:Nippon Kagaku Zasshi, 1958, vol. 79, pp. 866–72.Google Scholar
  14. 14.
    D. A. R. Kay and A. Kontopoulos:Proceedings of the International Symposium on ‘Metallurgical Chemistry: Applications in Ferrous Metallurgy’, Sheffield, England, 1971.Google Scholar
  15. 15.
    J. C. Chan, C. B. Alcock, and K. T. Jacob:Can. Met. Quart., 1973, vol 12, pp. 439–43.Google Scholar
  16. 16.
    D. C. Hilty, W. J. Forgeng, and R. L. Folkman:J. Metals., 1955, vol. 7, p. 253.Google Scholar
  17. 17.
    C. M. Diaz and F. D. Richardson:Trans. Inst. Mining Met., (London), 1967, vol. 76, C196–203.Google Scholar
  18. 18.
    C. B. Alcock and J. C. Chan:Can. Met. Quart, 1972, vol. 11, p. 559.Google Scholar
  19. 19.
    O. Kubaschewski, E. L., Evans, and C. B. Alcock:Metallurgical Thermochemistry, Pergamon Press, 1967.Google Scholar
  20. 20.
    J. F. Elliott, M. Gleiser, and V. Ramakrishna:Thermochemistry for Steelmaking, vol. II, Addison-Wesley, 1964.Google Scholar
  21. 21.
    Y. Jeannin, C. Mannerskantz, and F. D. Richardson:Trans. AIME, 1963, vol. 227, p. 300.Google Scholar
  22. 22.
    J. D. Dunitz, and L. E. Orgel:J. Phys. Chem. Solids, 1957, vol. 3, pp. 318–23.CrossRefGoogle Scholar
  23. 23.
    A. Navrotsky and O. J. Kleppa:J. Inorg. Nucl. Chem., 1967, vol. 29, p. 2701.CrossRefGoogle Scholar
  24. 24.
    W. W. Roth:J. Phys., 1964, vol. 25, p. 507.Google Scholar
  25. 25.
    H. Schmalzried:Z. Phys. Chem. Frankf., Aust., 1961, vol. 28, p. 203.Google Scholar
  26. 26.
    F. Bertaut:Compt. Rend., 1954, vol. 239, p. 504.Google Scholar
  27. 27.
    D. R. Stullet al.: JANAF Thermochemical Tables, NSRDS-NBS 37. 1971.Google Scholar
  28. 28.
    E. J. W. Verwey, F. DeBoer, and J. H. van Santen:J. Chem. Phys., 1948, vol. 16, pp. 1091–92.CrossRefGoogle Scholar
  29. 29.
    F. DeBoer, J. H. van Santen, and E. J. W. Verwey:J. Chem. Phys., 1950, vol. 18, pp. 1032–34.CrossRefGoogle Scholar

Copyright information

© The Metallurgical Society of AIME 1975

Authors and Affiliations

  • K. T. Jacob
    • 1
  • C. B. Alcock
    • 1
  1. 1.Dept. Metallurgy and Materials ScienceUniversity of TorontoTorntonCanada

Personalised recommendations