Biologia Plantarum

, 37:257 | Cite as

The effects of hormones and saccharides on growth and flowering of green and herbicides-treatedChenopodium rubrum L. plants

  • B. Živanović
  • Lj. Ćulafić
  • A. Filipovic
Original Papers


The medium forin vitro culture of green and SANDOZ herbicides-treatedChenopodium rubrum L. plants contained saccharides and hormones in different concentrations. Five days after sowing, the plants were exposed to non-inductive (15 long days—LD) or inductive (6 short days—SD + 9 LD) photoperiodic conditions. The length of hypocotyl and cotyledon blade were measured and percentage of flowering was scored. Gibberellic acid (GA3) stimulated hypocotyl growth of green and photobleached plants under SD and inhibited under LD conditions. Indole-3-acetic acid (IAA) slightly stimulated hypocotyl growth of green plants only under LD conditions. Benzylaminopurine (BAP) inhibited hypocotyl growth regardless of photoperiodic regime. The optimal concentration of glucose or saccharose for flowering in green and SANDOZ-treated plants was 5%. In green SAN 9785-treated plants exogenous saccharides compensated lack of photosynthates to bring about full flowering, but SAN 9789-treated plants needed in addition GA3.

Key words

benzylaminopurine gibberellic acid glucose indole-3-acetic acid saccharose SANDOZ-herbicides 





gibberellic acid


indole-3-acetic acid


long day(plant)


short day(plant)

SAN 9785


SAN 9789



  1. Bernier, G., Kinet, J.M., Sachs, R.M.: Levels, distribution, and metabolism of endogenous substances —In: Physiology of Flowering. II. Pp. 135–159. CRC Press, Boca Raton 1981.Google Scholar
  2. Bernier, G.: The control of floral evocation and morphogenesis.—Annu. Rev. Plant Physiol. Plant Mol. Biol.39: 175–219, 1988.CrossRefGoogle Scholar
  3. Crespi, P., Martinec, J., Macháčková, I., Greppin, H.: Characterization of a Ca2+-stimulated polyphosphoinositide-phospholipase C in isolated plasma membranes fromSpinacia oleracea andChenopodium rubrum leaves.—Arch Sci. Genève46: 335–346, 1993.Google Scholar
  4. Ćulafić, Lj., Konjević, R., Nešković, M.: Flowering ofin vitro grown spinach shoots in the presence of the herbicide Sandoz 9789.—Biol. Plant.25: 155–157, 1983.CrossRefGoogle Scholar
  5. Evans, L.T., King, R.W., Mander, L.N., Pharis, R.P.: The relative significance for stem elongation and flowering inLolium temulentum of 3β-hydroxylation of gibberellins.—Planta192: 130–136, 1994.Google Scholar
  6. Gorton, H.L., Briggs, W.R.: Phytochrome responses to end-of-day irradiations in light-grown corn grown in the presence and absence of Sandoz 9789.—Plant Physiol.66: 1024–1026, 1980.PubMedGoogle Scholar
  7. Heyde, N.M., Rombach, J.: Flower induction in Norflurazon-treatedPharbitis nil: photo-induction of photoperiodic sensitivity in seedlings grownin vitro and daylength sensitivity in partly bleached potted plants.—Acta bot. neerl.37: 371–377, 1988.Google Scholar
  8. Hilton, J.R., Smith, H.: The presence of phytochrome in purified barley etioplasts and itsin vitro regulation of biologically-active gibberellin levels in etioplasts.—Planta148: 312–318, 1980.CrossRefGoogle Scholar
  9. Ishioka, N., Tanimoto, S., Harada, H.: Roles of nitrogen and carbohydrate in floral-bud formation inPharbitis apex cultures.—J Plant Physiol.138: 573–576, 1991.Google Scholar
  10. Jaben, M., Deitzer, G.F.: Effects of the herbicide SAN 9789 on photomorphogenetic responses.— Plant Physiol.63: 481–485, 1979.Google Scholar
  11. Jacobs, W.P.: The role of auxin in inductive phenomena.—Biol. Plant.27: 303–309, 1985.CrossRefGoogle Scholar
  12. Krekule, J.: Stimulation and inhibition of flowering. Morphological and physiological studies.—In: La Physiologie de la Floraison. Pp. 19–57. CNRS, Paris 1979.Google Scholar
  13. Krekule, J., Macháčková, I., Pavlová, L., Seidlová, F.: Hormonal signals in photoperiodic control of flower initiation.—In: Krekule, J., Seidlová, F. (ed.): Signals in Plant Development. Pp. 145–162. SPB Academic Publishing, The Hague 1989.Google Scholar
  14. King, R.W., Pharis, R.P., Mander, L.N.: Gibberellins in relation to growth and flowering inPharbitis nil.—Plant Physiol.84: 1126–1131, 1987.PubMedGoogle Scholar
  15. Laskay, G., Lehoczki, E.: Photosynthetic properties of green barley leaves after treatment with pyridazinone herbicides-comparison with the effects of diuron.—J. exp. Bot.37: 1558–1567, 1986.CrossRefGoogle Scholar
  16. Laskay, G., Lehoczky, E., Dobi, A.L., Szalay, L.: Photosynthetic characteristics of detached barley leaves during greening in the presence of SAN 9785.—Planta169: 123–129, 1986.CrossRefGoogle Scholar
  17. Lejeune, P., Bernier, G., Kinet, J-M.: Sucrose levels in leaf exudate as a function of floral induction in long day plantSinapis alba.—Plant Physiol. Biochem.29: 153–157, 1991.Google Scholar
  18. McDaniel, C.N., King, R.W., Evans, L.T.: Floral determination andin-vitro floral differentiation in isolated shoot apices ofLolium temulentum L..—Planta185: 9–16, 1991.CrossRefGoogle Scholar
  19. Seidlová, F., Khatoon, S.: Effects of indol-3yl-acetic acid on floral induction and apical differentiation inChenopodium rubrum L..—Ann. Bot.40: 37–42, 1976.Google Scholar
  20. Seidlová, F.: Floral differentiation: a change of growth correlations in the shoot apical meristem.— Acta agr. univ. (Brno)33: 399–403, 1985.Google Scholar
  21. Seidlová, F.: Signals for changing rates and directions of apical growth operating in flowering—In: Krekule, J., Seidlová, F. (ed.): Signals in Plant Development. Pp 163–178. SPB Academic Publishing, The Hague 1989.Google Scholar
  22. Seidlová, F., Lozhnikova, V.N., Negretsky, V.A., Chailakhyan, M.Kh.: The growth of the shoot apex ofChenopodium rubrum L. treated with a florigenic extract from flowering tobacco plants: preliminary anatomical observations.—J. exp. Bot.41: 1347–1349, 1990.CrossRefGoogle Scholar
  23. Wejnar, R., Appenroth, K.J.: Studies on photosynthetic pigments inLemnaceae. XI. The bleaching effect of norflurazon (SAN 9789) in de-etiolating and autotrophically cultivated fronds ofSpirodela polyrhyza (L.) Schleiden in comparison withLemna gibba L..—Angew. Bot.64: 401–410, 1990.Google Scholar
  24. Wilson, R.N., Heckman, J.W., Somerville, C.R.: Gibberellin is required for flowering inArabidopsis thaliana under short days.—Plant Physiol.100: 403–408, 1992.PubMedGoogle Scholar
  25. Živanović, B., Ćulafić, Lj.: Photoperiodic induction of flowering in green and photobleachedChenopodium rubrum L. ecotype 184—a short-day plant.—Biol. Plant.34: 457–460, 1992.CrossRefGoogle Scholar
  26. Živanović, B., Vuletić, M., Vučinić, Ž.: Bioelectric potential difference across an intactChenopodium rubrum L. plant.—Period. Biol.90: 209–212, 1988.Google Scholar
  27. Živanović, B., Vuletić, M., Vučinić, Ž.: Light-induced transients of bioelectric potential difference across aChenopodium rubrum L. plant.—Biochem. Physiol. Pflanzen188: 211–219, 1992.Google Scholar

Copyright information

© Institute of Experimental Botany, ASCR 1995

Authors and Affiliations

  • B. Živanović
    • 1
  • Lj. Ćulafić
    • 2
  • A. Filipovic
    • 2
  1. 1.Centre for Multidisciplinary StudiesUniversity of BelgradeBelgradeYugoslavia
  2. 2.Institute of Botany, Faculty of ScienceUniversity of BelgradeBelgradeYugoslavia

Personalised recommendations