Indian Journal of Clinical Biochemistry

, Volume 21, Issue 1, pp 54–61 | Cite as

Sialic acid in cardiovascular diseases

  • P. K. Nigam
  • V. S. Narain
  • Ajay Kumar


Sialic acid, the acylated derivatives of 9-carbon sugar neuraminic acid, present as terminal component of oligosaccharide chains of many glycoproteins and glycolipids, has been recognized to be involved in the regulation of a great variety of biological phenomena. Studies have shown that serum sialic acid predicts both coronary heart disease and stroke mortality and reflects the existence or activity of an atherosclerotic process. Most of the studies have shown an elevation in serum sialic acid concentration in coronary heart disease and a positive correlation between the raised serum sialic acid and the severity of the coronary lesions is observed. However, a few contradictory reports are also available. Racial differences in serum sialic acid have also been reported and correlated with international differences in the prevalence of atherosclerosis. Reduced sialic acid content of platelets, erythrocytes and lipoproteins may play important role in the pathogenesis of atherosclerosis. Elucidation of the mechanism of alternation in sialic acid concentration may throw more light on its potential clinical utility. Hence more studies are needed to designates sialic acid as a cardiovascular risk factor/marker.

Key words

Sialic Acid Cardiovascular diseases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lindber, G., Eklund, G.A., Gullberg, Bo and Rastam L. (1991). Serum sialic acid concentration and cardiovascular mortality. Br. Med. J. 302, 143–146.Google Scholar
  2. 2.
    Lindbreg, G., Rastam, L., Gullberg, B. and Eklund, G.A. (1992). Serum sialic acid concentration predicts both coronary heart disease and stroke mortality: multivariate analysis including 54385 men and women during 20.5 years of follow up. Int. J. Epidemiol. 21, 253–257.CrossRefGoogle Scholar
  3. 3.
    Allain, P., Olivier, E., Le Bouil, A., Benoit, C. Geslin, P. and Tadei, A. (1996). Increase of Sialic acid concentration in the plasma of patients with coronary disease. Presse Med. 25, 96–98.PubMedGoogle Scholar
  4. 4.
    Wakabayashi, I., Sakamoto, K., Yoshimoto, S. and Kakishita, E. (1994). Serum sialic acid concentration and atherosclerotic risk factors. J. Atheroscler, Thromb., 1, 113–117.Google Scholar
  5. 5.
    Haq, M., Haq, S., Tutt, P. and Crook, M. (1993). Serum total and lipid-associated sialic acid in normal individual’s and patient with myocardial infarction and their relationship to acute phase proteins. Ann. Clin. Biochem. 30, 383–386.PubMedGoogle Scholar
  6. 6.
    Crook, M.A., Treloar, A., Haq, M., and Tutt, P. (1994). Serum total sialic acid and acute phase proteins in elderly subjects. Eur. J. Clin. Chem. Clin Biochem. 32, 745–747.PubMedGoogle Scholar
  7. 7.
    Nigam, P.K., Narain, V.S., Chandra, N., Puri, V.K., Saran, R.K., Dwivedi, S.K. and Hasan, M. (1995). Serum and platelet sialic acid in acute myocardial infarction. Ind. J. Clin. Biochem. 10, 106–109.CrossRefGoogle Scholar
  8. 8.
    Watts, G.F., Crook, M.A., Haq, S. and Mandalia, S. (1995). Serum sialic acid as an indicator of change in coronary artery disease. Metabolism 44, 147–148.PubMedCrossRefGoogle Scholar
  9. 9.
    Gracheva, E.V., Samovilova, N.N., Golovanova, N.K., Il’inskoya, O.P., Trarak, E.M., Malysher, P.P., Kukharchuk, N.V. and Prokazova, N.V. (2002). Sialyletransferase activity of human plasma and aortic intima is enhanced in otherosclions. Biochem. Biophys. Acta. 1586 (1), 123–128.PubMedGoogle Scholar
  10. 10.
    Vaya, A., Falco, C., Reganon, E., Vila, V., Martinez-Sales, V., Corella, D., Contreras, M.T. and Aznar, J. (2004). Influence of plasma and erythrocyte factors on red blood cell aggregation in survivors of acute myocardial infarction. Thromb. Haemostas 91, 354–359.Google Scholar
  11. 11.
    Knuiman, M.W., Watts, G.F. and Divitini, M.L. (2004). Is sialic acid an independent risk factor for cardiovascular disease? A 17-years followup study in Busselton, Western Australia. Ann. Epidemiol. 14, 627–632.PubMedCrossRefGoogle Scholar
  12. 12.
    Mandic, R., Opper, C., Krappe, J. and Wesmann, W. (2002). Platelet sialic acid as a potential pathogenic factor in coronary disease. Diabetes Res. Clin. Pract. 58, 37.CrossRefGoogle Scholar
  13. 13.
    Hedengue, A., Razavian, S.M., Del.-Pino, M., Simon, A. and Levenson, J. (1996). Influence of sialic acid on enythrocyte aggregation in hypercholesterolaemia. Thromb. Haemost. 76, 944–949.Google Scholar
  14. 14.
    Orekhov, A.N., Tertov, V.V., Mukhim, D.N. and Mikhallenko, I.A. (1989). Modification of low density liportotein by desialylation causes lipid accumulation in cultured cells Discovery of desialytated lipoprotein with altered cellular metabolism in the blood of atheroselerotic patients. Biochem. Biophys. Res. Common. 162, 206–211.CrossRefGoogle Scholar
  15. 15.
    Sillanaukee, P., Ponnio, M. and Jaaskelainen, I.P. (1999). Occurrence of sialic acids in healthy humans and different disorders. Eur. J. Clin. Invest. 29, 413–425.PubMedCrossRefGoogle Scholar
  16. 16.
    Taniuchi, K., Chifu, K., Hayastri, al. (1981). A new enzymatic method for the determination of Sialic acid in serum and it application for a marker for acute phase reactants. Kobe J. Med. Sci. 27, 91–102.PubMedGoogle Scholar
  17. 17.
    Patren, S. and Vesterberg, O. (1989). The N-acetylneuraminic acid content of five forms of human tranferrin. Biochim. Biophys. Acta 994, 161–165.Google Scholar
  18. 18.
    Corfield, A.P., Wember, M., Schauer, R. and Rott, R. (1982). The specificity of Viral sialidases. The use of oligosaccharide susbtrate to probe enzymic characteristics and strain specific differences. Eur. J. Biochem. 124, 521–526.PubMedCrossRefGoogle Scholar
  19. 19.
    Haverkamp, J., Schauer, R. and Wember, M. (1976). Neuraminic acid derivatrives newly discovered in humans. Hoppe Seyler’s Z. Physiol. Chem. 357, 1699–1705.PubMedGoogle Scholar
  20. 20.
    Schauer, R. (1982). Chemistry, metabolism and biological functions of sialic acids. Adv. Carbohyd. Chem. Biochem. 40, 131–234.Google Scholar
  21. 21.
    Rosenberg, A. (1995). Biology of the “Sialic Acids” Plenum, New York.Google Scholar
  22. 22.
    Schauer, R. and Kamerling, J.P. (1997). Chemistry, biochemistry and biology of sialic acids. In: “Ghycoproteins” J. Montreuil, H. Schachter and J.F.G. Vliegenthart. Eds.Google Scholar
  23. 23.
    Schauer, R., Kelm, S., Reuter, G., Roggentin, P. and Shaw, L. (1995). Biochemistry and role of sialic acids In “Biology of Silaic acids” (A Rosenberg, Ed.). p. 7–67, Plenum, New York.Google Scholar
  24. 24.
    Varki, A. (1992). Diversity in the sialic acids. Glycobiology 2, 25–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Kelm, S. and Schauer, R. (1997). Sialic acids in molecular and cellular interaction. Int. Rev. Cytol. 175, 137–240.PubMedGoogle Scholar
  26. 26.
    Rastam, L., Lindberg, G., Folsom, A.R., Burke, G.L., Nilsson-Ehle, P. and Lundblad, A. (1996). Association between serum sialic acid concentration and carotid atherosclerosis measured by B-Mode untrasound. Int. J. Epidemiol. 25, 1953–1958.CrossRefGoogle Scholar
  27. 27.
    Pyoralla, K., Laasko, M. and Uusitupa, M. (1987). Diabetes. and atherosclerosis: an epidemiologic view. Diabetes Metab. Rev. 3, 463–524.Google Scholar
  28. 28.
    Pickup, J.C. and Mattock, M.B. (2003). Activation of the innate immune system as a predictor of cardiovascular mortality in type 2 diabetes mellitus. Diabet. Med. 20, 723–726.PubMedCrossRefGoogle Scholar
  29. 29.
    Crook, M. and Tutt, P. (1992). Serum sialic acid concentration in patients with hypertriglyceridaemia showing the Fredickson’s II B phenotype. Clin. Sci. 83, 593–595.PubMedGoogle Scholar
  30. 30.
    Wakabayashi, I., Sakamoto, K., Yoshimoto, S. and Masui, H.P. (1992). Relation of serum sialic acid to lipid concentration. Br. Med. J. 305, 562–563.Google Scholar
  31. 31.
    Crook, M., Lumb, P., Andrews, V. and Swaminathan, R. (1998). Serum total sialic acid, a reputed cardiovascular risk factor and its relationship to lipids, plasma fasting insulin, blood pressure and body mass index in normal individuals. Clin. Sci. 95, 53–57.PubMedCrossRefGoogle Scholar
  32. 32.
    Masuda, H., Wakabayashi, R. and Wakabayashi, I. (1998). Serum sialic acid and ankle versus brachial arterial pressure ratio in NIDDM. Scand. J. Clin. Lab. Invest. 58, 433–439.PubMedCrossRefGoogle Scholar
  33. 33.
    Zahedi, R.G., Summers, L.K., Lumb, P., Chik, G. and Crook, M.A. (2001). The response of serum sialic acid and other acute phase reactants to an oral fat lead in healthy humans. Eur. J. Intern. Med. 12, 510–514.PubMedCrossRefGoogle Scholar
  34. 34.
    Wakabayashi, I. and Masuda, H. (2002). Relation of serum sialic acid to blood coagulation activity in type 2 diabetes. Blood Coagul. Fibrinolysis 13, 691–696.PubMedCrossRefGoogle Scholar
  35. 35.
    Gokmen, S.S., Kilicli, G., Ozcelik, F., Ture, M. and Gulen S. (2002). Association between serum total and lipid-bound sialic acid concentration and the severity of coronary atherosclerosis. J. Lab. Clin. Med. 140, 110–118.PubMedGoogle Scholar
  36. 36.
    Salomone, O.A., Croon, J.R., Hossein-Niam., Holt, D. and Kaski, J.C. (1998). Serum sialic acid concentration is not associated with the extent or severity of coronary disease in patients with stable angina pectoris. J. Lab. Clin. Med. 140, 110–118.Google Scholar
  37. 37.
    Wu, E.B., Lumb, P., Chambers, J.B. and Crook, M.A. (1999). Plasma sialic acid and coronary artery atherosclerosis load in patients with stable chest pain. Atherosclerosis 145, 261–266.PubMedCrossRefGoogle Scholar
  38. 38.
    Flynn, M.D., Corrall, R.J.M., Waters, P.J. and Pennock, C.A. (1991). Sialic acid and cardiovascular mortality. Br. Med. J. 302, 533–534.CrossRefGoogle Scholar
  39. 39.
    Morell, A.G., Gregoriadis, G., Scheinberg, I.H., Hickman, J. and Ashwell, G. (1971). The role of glycoproteins in the circulation. J. Biol. Chem. 246, 1461–1467.PubMedGoogle Scholar
  40. 40.
    Baumann, H. and Gauldie, J. (1994). The acute phase response. Immunol. Today 15, 74–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Lindberg, G., Rastom, L., Nilsson-Ehle, P., Lundblad, A., Ramstam, J., Folsom, A.R. and Bruke, G.L. (1999). Serum sialic acid and asialoglycoproteins in asymptomatic carotid artery atherosclerosis, ARIC Investigators, Atherosclerosis Risk in Communities. Atherosclerosis 146, 65–69.PubMedCrossRefGoogle Scholar
  42. 42.
    Gokmen, S.S., Kilicli, G., Ozcelik, F. and Gulen S. (2000). Serum total and lipid bound sialic acid levels following acute myocardial infarction. Clin. Chem. Lab. Med. 38, 1249–1255.PubMedCrossRefGoogle Scholar
  43. 43.
    Berkan, O. and Sagban, M. (2002). Sialic acid or Troponin T to detect perioperative myocardial damage in patients undergoing elective coronary artery bypass grafting. Cir. J. 66, 1019–1023.CrossRefGoogle Scholar
  44. 44.
    Orekhov, A.N., Tertov, V.V., Murhin, D.N. and Kabakov, A.E. (1989). Modified (desialytated) low density liporotein and auto antibodies against lipoprotein circulating in the blood of atherosclerotic patients cause atherosclerotic mnifestation in aortic cell culture. In: Descovich, G.C., editor, Atherosclerosis and cardiovascular disease. Bologna Editrice composition.Google Scholar
  45. 45.
    Orekhov, A.N., Tertov, V.V. and Mukhin, D.N. (1991). Desialylated low density lipoproteins-naturally occurring lipoprotein with atherogenic potency. Atherosclerosis 86, 153–161.PubMedCrossRefGoogle Scholar
  46. 46.
    Tertov, V.V., Sobenin, I.A., Gabbasov, Z.A.,et al. (1992). Multhiple- modified desialylated low density lipoproteins that cause intracellular lipid accumulation, Isolation, fractionation and Characterization. Lab. Invest. 67, 665–675.PubMedGoogle Scholar
  47. 47.
    Tertov, V.V., Kaplun, V.V., Sobenin, Z.A. and Orekhov, A.N. (1998). Low-density lipoprotein modification occurring in human plasma possible mechanism ofin vivo lipoprotein desialylation as a primary step of atherogenic modification. Atherosclerosis 138, 183–195.PubMedCrossRefGoogle Scholar
  48. 48.
    Kruth, H.S. 1997). The fate of lipoprotein Cholesterol entering the arterial wall. Curr. Opin. Lipidol. 8, 256–252.Google Scholar
  49. 49.
    Sprague, E.A., Moser, M., Edwards, E.H. and Schwartz, C.J. (1998). Stimulation of receptor-mediated low density lipoproteins endocytosis in neuraminidase- treated cultured bovine aortic endothelial cells. J. Cell Physiol. 137, 251–262.CrossRefGoogle Scholar
  50. 50.
    Malmendier, C.L., Delcroix, C. and Fontaine, M. (1980). Effect of sialic acid removal on human low density lipoprotein catabolismin vivo. Atherosclerosis 37, 277–284.PubMedCrossRefGoogle Scholar
  51. 51.
    Filipovic, I. and Buddecke, E. (1979). Desialized low—density lipoprotein regulates cholesterol metabolism in receptor-deficient fibroblastz. Eur. J. Biochem. 101, 119–122.PubMedCrossRefGoogle Scholar
  52. 52.
    Melajaryi, N., Gylling, H. and Miettinen, T.A. (1996). Sialic acid and the metabolism of low-density lipoproteins. J. Lipid Res. 37, 1625–1631.Google Scholar
  53. 53.
    Chappey, B., Myara, I., Giral, P., Kerharo, G., Plainfosse, M.C., Levenson, J., Simon, A. and Moati, N. (1995). Evaluation of the sialic acid content of LDL as a marker of coronary calcification and extracoronary atherosclerosis in asymptomatic hypercholesterolemic subjects. PCVMETRA group. Arterioscler. Thromb. Vasc. Biob. 15, 334–339.Google Scholar
  54. 54.
    Chappey, B., Beyssen, B., Foos, E., Ledru, F., Guermonprez, J.L., Gaux, J.C. and Myara, I. (1998). Sialic acid content of LDL in coronary artery disease: no evidence of of desialylation in subjects with coronary stenosis and increased level in subjects with extensive atherosclerosis and acute myocardial infarction: relation between desialylation andin vitro peroxidation. Arterioscler. Thromb. Vasc. Biol. 18, 876–883.PubMedGoogle Scholar
  55. 55.
    Crook M., Kerai, P., Andrews, V., Lumb, P. and Swaminatham, R. (1998). Serum total sialic acid, a reputed cardiovascular risk factor, is elevated in South Asian men compared to European men. Ann. Clin. Biochem. 35, 242–244.PubMedGoogle Scholar
  56. 56.
    Lindberg, G., Iso, H., Rastom, L., Lundblad, A. and Folsom, A.R. (1997). Serum sialic acid and its correlates in community samples from Akita, Japan and Minneapolis, USA, Int. J. Epidemiol. 26, 58–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Seaman, G.V.F. and Vassar, P.S. (1966). Changes in electrokinetic properties of platelets during their aggregation. Arch. Biochem. Biophys. 117, 10–17.PubMedCrossRefGoogle Scholar
  58. 58.
    Seaman, G.V.F. (1967). Surface potential and platelet aggregation. In: Platelets, their role in heamostasis and thrombosis. Ed. Brinkhous, K.M., Wright, I.S., Soulier, J.P., Robers, H.R. and Hinnoms, S. p. 53–68.Google Scholar
  59. 59.
    Grothum, K.A. (1969). Platelet surface charge and aggregation effects of polyelectrohytes. Thrombos. Diathes Haemorrh. 21, 450–462.Google Scholar
  60. 60.
    Hampton, J.R. and Mitchell, J.R.A. (1969). Modification of the electrokinetic response by blood platelets to aggregating agents. Nature 210, 1000–1003.CrossRefGoogle Scholar
  61. 61.
    Isohisa, I., Jung, S.M., Motomiya, T.,et al. (1981). Relations among electrophoretic mobility, sialic acid and platelet aggregability and its interpretation. Ketsuekito Myakkan. 12, 564–567.Google Scholar
  62. 62.
    Yamazaki, H., Jng, S.M., Tanoue, K.,et al. (1981). Surface negative charge, membrane glyco proteins and functions of platelets. ketsuekito. Myakkam. 12, 520–531.Google Scholar
  63. 63.
    Jung, S.M., Kinoshita, K., Tanoue, K., Isohisa, I. and Yamazaki, H. (1982). Role of surface negative charge in platelet function related to the hyperactive state in estrogen treated prostatic carcinoma. Thromb. Haemostasis 43, 203–209.Google Scholar
  64. 64.
    Tanoue, K., Jung, S.M., Yamamoto, N. and Yamazaki, H. (1984). The role of surface negative charge on platelets function. Electrophor. 83. Adv. Methods. Biochem. Clin. Appl. Proc. Int. Conf. p. 333–340.Google Scholar
  65. 65.
    Choi, S.I., Simone, J.V. and Journey, L.J. (1982). Neuramindase- induced thrombo-cytopenia in rats. Br. J. Haematol. 22, 93–99.CrossRefGoogle Scholar
  66. 66.
    Grottum, K.A. and Solumn, N.O. (1969). Congenital thrombocytopenia with giant platelets: A defect in platelet membrane. Br. J. Haematol. 16, 275–290.CrossRefGoogle Scholar
  67. 67.
    Steele P.P., Weily, H.S., Davies, H. and Genton, E. (1973). Platelet function studies in coronary artery disease. Circulation 48, 1194–1200.PubMedGoogle Scholar
  68. 68.
    Steele, P., Rainwater, J. and Vogel, R. (1978). Abnormal platelet survival time in men with myocardial infarction and normal coronary arteriogram. Am. J. Cardiol. 41, 60–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Hanson, V., Landarv, S., Flasher, M., Wax, S. and Webb, W. (1980). Sialic acid-depleted red cells following myocardial infarction. Am. Heart J. 99, 483–486.PubMedCrossRefGoogle Scholar
  70. 70.
    Goswmi, K. and Koner, B. (2002). Level of sialic acid residues in platelet proteins in diabetes, aging and Hodgkin’s lymphoma: a potential role of Free radicals in desialylation. Biochem. Biophys. Res. Commun. 297, 502.CrossRefGoogle Scholar
  71. 71.
    Aminoff, D., Bell, W.C., Fulton, I. and Ingebrigtsen, N. (1976). Effects of sialidase on the viability of erythrocytes in circulation. Am. J. Haematol. 1, 419–432.CrossRefGoogle Scholar
  72. 72.
    Yachin, S. and Gardner, F.H. (1961). Measurment of human erythrocyte neuraminic acid: relationship to haemlysis and red blood cell virus interaction. Br. J. Haematol. 7, 464–475.CrossRefGoogle Scholar
  73. 73.
    Cohen, N.S., Ekholm, J.E., Luthra, M.G. and Hanahan, D.J. (1976). Biochemical characterization of density separated human erythrocytes. Biochimica et Biophysica Acta 419, 229–242.PubMedCrossRefGoogle Scholar
  74. 74.
    Gattengno, L., Perret, G., Fabia, F. and Cornillot, P. (1981). Decrease of Cabohydrate in membrane glycoproteins during human erythrocyte agingin vivo. Mechanisms of aging and development 16, 205–219.CrossRefGoogle Scholar
  75. 75.
    Lewis, S.M. (1962). Red cell abnormalities and haemolysis in aplastic anaemia. Br. J. Haematol. 8, 322–334.PubMedCrossRefGoogle Scholar
  76. 76.
    Janick, J. and Schauer, R. (1974). Sialic acid-A determinant of the life-time of rabbit erythrocytes. Hoppe-Seyler’s Z. Physiol. Chem. 355, 395–400.Google Scholar
  77. 77.
    Janick, J., Schauer, R. and Streicher, H.J. (1975). Influence of membrane- bound N-acetyl-neuraminic acid on the survival of erythrocytes in man. Hoppe- Seyler’s Z. Physiol. Chem. 356, 1329–1331.Google Scholar
  78. 78.
    Janick, J.M., Schauer, R., Andres, K.H. and Von During, M. (1978). Sequestration of neuraminidase-treated erythrocytes-studies on its topographic, morphologic and immunologic aspects. Cell Tissue Res. 186, 209–226.Google Scholar
  79. 79.
    Gottschalk, A. (1972). Ghycoproteins. Essex: Elsevia Science Publishers, p. 381.Google Scholar
  80. 80.
    Hedengue, A.L., Del-Pino, M., Simon, A. and Levenson, J. (1998). Erythrocyte disaggregation shear stress, sialic acid and cell aging in humans. Hypertension 32, 324–330.Google Scholar
  81. 81.
    Resniszky, P., Yaari, A. and Danon, D. (1972). Biophysical characteristics of erythrocytes during myocardial infarction and venous thrombosis. Thromb. Diathes Hemorrh. 28, 415–418.Google Scholar
  82. 82.
    Hanson, V.A., Shettigar, V.R., Loungani, R.R. and Nadijcka, M.D. (1987). Plasma sialidase activity in acute myocardial infarction. Am. Heart J. 114, 59–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Venerando, B., Fiorilli, A., Croci, G., Tringali, C., Goi, G., Mazzanti, L., Lombardo, A. and Tettamontic, G. (2002). Acute and neutral sialidse in the erythrocyte membrane of type 2 diabetes patients. Blood 99, 1064–1070.PubMedCrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2006

Authors and Affiliations

  • P. K. Nigam
    • 1
  • V. S. Narain
    • 1
  • Ajay Kumar
    • 2
  1. 1.Department of CardiologyKing George’s Medical UniversityLucknow
  2. 2.Department of BiochemistryGSVM Medical CollegeKanpur

Personalised recommendations