Folia Geobotanica et Phytotaxonomica

, Volume 25, Issue 3, pp 291–302 | Cite as

Standing crop and mineral content of reed,Phragmites australis (Cav.) Trin. exSteudel, in Sweden—Management of reed stands to maximize harvestable biomass

  • Wilhelm Granéli


The mean above-ground biomass of reed,Phragmites australis, in closed South Swedish stands was found to be 1 kg dry weight. m−2 in August. Leaves, which are shed in the autumn in contrast to culms that remain standing, represent 26% of the total shoot weight. Because part of the culm will be covered by water, ice and snow 0.5 kg dry weight. m−2 is available for winter harvest. Nutrient concentrations in shoots decrease throughout summer and winter. Although part of the maximal summer standing stock of N, P and K is lost in shed leaves, 55%, 75% and 80%, respectively, can potentially be recycled to rhizomes. Nitrogen fertilization and removal of standing litter in winter can increase above-ground biomass production in reed stands. Reed culms, cut in winter with agricultural machinery or amphibious harvesters, have been tested as a fuel for heating purposes in Sweden

Key words

Reed Phragmites Nitrogen Phosphorus Potassium Biofuel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Björk S. etGranéli W. (1978a): Energivass—Rapport Etapp I (Energy reeds-report part I).— CODEN:LUNBDS/(NBLI-3001)/1-77/(1978).—[Mimeographed, in Swedish with English Summary] Dept. of Limnology, Lund.Google Scholar
  2. Björk S. etGranéli W., (1978b): Energy reeds and the environment.—Ambio, Stockholm, 7: 150–156.Google Scholar
  3. Björndahl G. (1983): Structure and biomass ofPhragmites stands.—Dissertation, University of Gothenburg, Sweden, 207 pp.Google Scholar
  4. De Laune R. D., Reddy C. N. etPatrick W. H. Jr. (1981): Effects of pH and redox potential on concentration of dissolved nutrients in an estuarine sediment.—J. Environ. Qual. 10: 276–279.CrossRefGoogle Scholar
  5. Ekstam B., Bengtsson T. etLandin J. (1985): Konsekvenser för vattenlevande organismer as vasskörd vintertid i sjön Tåkern.—Swedish National Environment Protection Beard, Stockholm, PM 1993, 108 pp.Google Scholar
  6. Granéli W. (1980): Energivass—Rapport Etapp. III (Energy reeds—report part III).— CODEN:LUNBDS/(NBLI-3029)/1-39/(1890).—Dept. of Limnology, Lund. [Mimeographed, in Swedish with English Summary].Google Scholar
  7. Granéli W. (1984): ReedPhragmites australis (Cav.) Trin exSteudel as an energy source in Sweden.—Biomass, Barking, 4: 183–208.CrossRefGoogle Scholar
  8. Granéli W. (1985): Biomass response after nutrient addition to natural stands of reed,Phragmites australis.—Verh. Internat. Verein. Limnol., Stuttgart, 22: 2956–2961.Google Scholar
  9. Granéli W. (1987): Shoot density regulation in stands of reed,Phragmites australis (Cav.) Trin-exSteudel.—Arch. Hydrobiol. Beih. Ergebn. Limnol., Stuttgart, 27: 211–222.Google Scholar
  10. Granéli W. (1989): Influence of standing litter on shoot production in reed,Phragmites australis (Cav.) Trin exSteudel.—Aquat. Bot., Amsterdam, 35: 99–109.CrossRefGoogle Scholar
  11. Granéli W. etSolander D. (1988): Influence of aquatic macrophytes on phosphorus cycling in lakes.—Hydrobiologia, The Hague, 170: 245–266.Google Scholar
  12. Granéli W., Sytsma M. D. etWeisner S. (1983): Changes in biomass, nonstructural carbohydrates, nitrogen and phosphorus content of the rhizomes and shoots ofPhragmites australis during spring growth.—Proc. Int. Symp. Aquat. Macrophytes, Nijmegen, 18–23 Sept, 1983: 78–83.Google Scholar
  13. Hansson L.-A. etGranéli W. (1984): Effects of winter harvest on water and sediment chemistry in a stand of reed (Phragmites australis).—Hydrobiologia, The Hague, 112: 131–136.Google Scholar
  14. Husák Š. (1978): Control of reed and reed mace stands by cutting.—In:Dykyjová, D. andKvět, J., Pond Littoral Ecosystems—Structure and Functioning.—Ecological Studies 28, Springer-Verlag, Berlin, p. 404–408.Google Scholar
  15. Jordan T. E. etWhigham D. F. (1988): The importance of standing dead shoots of the narrow leaved cattail,Typha angustifolia L.—Aquat. Bot., Amsterdam, 29: 319–328.CrossRefGoogle Scholar
  16. Krisch H., Krauss N. etKahl M. (1979): Der Einfluss von Schnitt und Frost auf Entwicklung und Biomasse produktion derPhragmites Röhrichte am Greifswalder Bodden.—Folia Geobot. Phytotax., Praha, 14: 121–144.Google Scholar
  17. Linden M. J. H. A. van der (1980): Nitrogen economy of reed vegetation in the Zuidelijk Flevoland polder. I. Distribution of nitrogen among shoots and rhizomes during the growing season and loss of nitrogen due to fire management.—Acta Ecologica/Ecol. Plant. 1: 219–230.Google Scholar
  18. Linden M. J. H. A. van der (1986): Phosphorus economy of reed vegetation in the Zuidelijk Flevoland polder (The Netherlands): seasonal distribution of phosphorus among shoots and rhizomes and availability of soil phosphorus.—Acta Ecologica/Ecol. Plant. 7: 397–405.Google Scholar
  19. Mook J. H. andVan Der Toorn J. (1982): Influence of environmental factors and management on stands ofPhragmites australis. II. Effects on yield and its relationship with shoot density.— J. Appl. Ecol., Oxford, 19: 501–517.CrossRefGoogle Scholar
  20. Patrick W. H. Jr. etDeLaune R. D. (1976): Nitrogen and phosphorus utilization bySpartina alterniflora in a salt marsh in Barataria Bay, Louisiana.—Estuarine Coastal Mar. Sci. 4: 59 to 64.CrossRefGoogle Scholar
  21. Sale P. J. M. etWetzel R. G. (1983): Growth and metabolism ofTypha species in relation to cutting treatments.—Aquat. Bot., Amsterdam, 15: 321–334.CrossRefGoogle Scholar
  22. Schierup H.-H. (1978): Biomass and primary production in aPhragmites communisTrin. swamp in North Jutland, Denmark.—Verh. Internat. Verein. Limnol., Stuttgart, 20: 94–99.Google Scholar
  23. Smart R. M. etBarko J. W. (1980): Nitrogen and salinity tolerance ofDistichlis spicata andSpartina alterniflora.—Ecology, Durham, 61: 630–638.CrossRefGoogle Scholar
  24. Thompson D. J. etShay J. M. (1985): The effects of fire onPhragmites australis in the Delta Marsh, Manitoba.—Can. J. Bot., Ottawa, 63: 1864–1869.Google Scholar
  25. Weisner S. E. B. etGranéli W. (1989): Influence of substrate conditions on the growth ofPhragmites australis after a reduction in oxygen transport to below-ground parts.—Aquat. Bot., Amsterdam, 35: 71–80.CrossRefGoogle Scholar
  26. Yamasaki S. (1987): Oxygen demand and supply inZizania latifolia andPhragmites australis.— Aquat. Bot., Amsterdam, 29: 205–215.CrossRefGoogle Scholar
  27. Østergaard-Andersen F. (1980): Oxygen and nitrate respiration in a reed swamp sediment from a eutrophic lake.—Holarctic Ecology, Copenhagen, 4: 66–72.Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 1990

Authors and Affiliations

  • Wilhelm Granéli
    • 1
  1. 1.Littoral Ecology Research Group, Limnology, Department of EcologyUniversity of LundLundSweden

Personalised recommendations