Indian Journal of Clinical Biochemistry

, Volume 22, Issue 1, pp 10–17

Biochemical markers of myocardial injury

  • P. K. Nigam
Article

Abstract

The serum markers of myocardial injury are used to help in establishing the diagnosis of myocardial infarction. The older markers like aspartate amino-transferase, creatine kinase, lactate dehydrogenase etc. lost their utility due to lack of specificity and limited sensitivities. Among the currently available markers cardiac troponins are the most widely used due to their improved sensitivity specificity, efficiency and low turn around time. Studies have shown that cardiac troponins should replace CKMB as the diagnostic ‘gold standard’ for the diagnosis of myocardial injury. The combination of myoglobin with cardiac troponins has further improved the accuracy in the diagnosis of acute coronary syndromes and thereby reducing the hospital stay and patients' money. Among the other new markers of early detection of myocardial damage, heart fatty acid binding protein, glycogen phosphorylase BB and myoglobin/carbonic anhydrase III ratio seem to be the most promising. But the search for the most ideal marker of myocardial injury is still on.

Key words

Cardiac markers Myocardial infarction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nomenclature and criteria for diagnosis of Ischaemic Heart Disease: Report of the Joint International Society and Federation of Cardiology/World Health Organization Task Force on standardization of clinical nomenclature. Circulation 1979; 59: 607–08.Google Scholar
  2. 2.
    Alpert JS, Thygeson K, Antman E, et al. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36: 959–69.PubMedCrossRefGoogle Scholar
  3. 3.
    Mc Queen MJ, Holdir D, El-Maraglin NR. Assessment of the accuracy of serial electrocardiograms in the diagnosis of myocardial infarction. Am Heart J 1983; 105: 258–61.CrossRefGoogle Scholar
  4. 4.
    Armstrong SC. Protein kinase activation and myocardial ischaemia/reperfusion injury. Cardiovasc Res 2004; 61: 427–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Varley H, Gowenlock AH, Bell M. Enzymes, In: Practical Clinical Biochemistry, Vol. I, 5th edn. William Heinemann Medical Books Ltd. London 1984; p 685–770.Google Scholar
  6. 6.
    Baron DN, Bell JL, Oakley C. Serum transaminase in coronary thrombosis and other conditions. J Clin Path 1956; 9: 389–90.CrossRefGoogle Scholar
  7. 7.
    Agress CM. Evaluation of the transaminase test. Am J Cardiol 1979; 3: 74–93.CrossRefGoogle Scholar
  8. 8.
    Kachmar JR. Enzymes, In: Fundamentals of Clinical Chemistry, NW. Tietz, Editor Sounders, Philadelphia 1976; p 674.Google Scholar
  9. 9.
    Sacks HJ, Lanchantin GF. An elevation of serum transaminases in jaundice states. Am J Clin Path. 1960; 33: 97–108.PubMedGoogle Scholar
  10. 10.
    Elliot BA, Wilkinson JH, Serum “α-hydroxybutyric dehydrogenase” in myocardial infarction and in liver disease. Lancet 1961; 1: 698–99.CrossRefGoogle Scholar
  11. 11.
    Ebashi S, Toyokura Y, Momoi H, Sugita H. High creatine phosphokinase activity of sera of progressive muscular dystrophy. J Biochem (Japan) 1959; 46: 103–05.Google Scholar
  12. 12.
    Doran GR, Wilkinson JH. The origin of the elevated activities of creatine kinase and other enzymes in the sera of patients with myxedema. Clin Chim Acta 1975; 62: 203–07.PubMedCrossRefGoogle Scholar
  13. 13.
    Szigmond EK, Starkweather WH, Duboff GS, Flynn KA. Elevated Serum Creatine Phosphokinase activity in a family with malignant hyperpyrexia. Anesth Analg 1972; 51: 827.Google Scholar
  14. 14.
    LaFair JS, Myerson RM. Alcoholic myopathy. Arch Intern Med 1968; 122: 417–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Dubo H, Park DC, Pennigton R, Jt Kalbag RM, Walton JN. Serum creatine kinase in cases of stroke, head injury and meningitis. Lancet 1967; 2: 743–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Vassella F, Richterich R, Rossi E. The diagnostic value of serum creatine kinase in neuromuscular and muscular disease. Paediatrics 1965; 35: 322–30.Google Scholar
  17. 17.
    Lee TH, Goldman L. Serum enzymes assay in the diagnosis of acute myocardial infarction. Recommendation based on a quantitative analysis. Ann Intern Med 1986; 105: 221–33.PubMedGoogle Scholar
  18. 18.
    Seckinger DL, Vazquez DA, Rosenthal PK, Mendizabal RC. Cardiac isoenzyme methodology and the diagnosis of acute myocardial infarction. Am J Clin Pathol 1983; 80: 164–69.PubMedGoogle Scholar
  19. 19.
    Roberts R. Enzymatic diagnosis of acute myocardial infarction. Chest 1988; 93: 3S-6S.PubMedCrossRefGoogle Scholar
  20. 20.
    Collison PO, Rosalki SB, Kuwana T, et al. Early diagnosis of acute myocardial infarction by CK-MB mass measurements. Ann Clin Biochem 1992; 29: 43–47.Google Scholar
  21. 21.
    Lott JA, Heinz JW, Reger KA. Time changes of creatine kinase and creatine kinase MB isoenzyme versus discrimination values in the diagnosis of acute myocardial infarction: what is the optimal method for displaying the data? Eur J Clin Chem Biochem 1995; 33: 491–96.Google Scholar
  22. 22.
    Panteghini M. Diagnostic application of CK-MB mas determination. Clin Chim Acta 1998; 272: 23–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Ravkilde J, Hansen AB, Horder M, Jorgensen PJ, Thygesen K. Risk stratification in suspected acute myocardial infarction based on a sensitive immunoassay for creatine kinase isoenzyme MB. Cardiology 1992; 80: 143–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Grande P, Granborg J, Clemmensen P, Sevilla DC, Wagner NB, Wagner GS. Indices of reperfusion in patients with acute myocardial infarction using characteristics of the CK-MB time activity curve. Am Heart J 1991; 122: 400–08.PubMedCrossRefGoogle Scholar
  25. 25.
    Nageh T, Sherwood RA, Harris BM, Byrne JA, Thomas MR. Cardiac troponin T and I and creatine kinase—MB as markers of myocardial injury and predictors of outcome following percutaneous coronary intervention. Int J Cardiol 2003; 92: 285–93.PubMedCrossRefGoogle Scholar
  26. 26.
    El Allaf M, Chapelle JP, El Allaf E, et al. Differentiating muscle damage from myocardial injury by means of the serum creatine kinase (CK) isoenzyme MB mass measurement/total CK activity ratio. Clin Chem 1986; 32: 291–95.PubMedGoogle Scholar
  27. 27.
    Thrompson WG, Mahr RG, Yohannan WS, Pincus MR. Use of creatine kinase MB isoenzyme for diagnosing myocardial infarction when total creatine kinase activity is high. Clin Chem 1988; 34: 2208–10.Google Scholar
  28. 28.
    Keffer JH. Myocardial markers of injury-evolution and insights. Am J Clin Pathol 1996; 105: 305–20.PubMedGoogle Scholar
  29. 29.
    Arenas J, Diaz V, Liras G, et al. Activities of creatine kinase and its isoenzymes in serum in verious skeletal muscle disorders. Clin Chem 1988; 34: 2460–62.PubMedGoogle Scholar
  30. 30.
    Puleo PR, Guadagno PA, Roberts R, et al. Early diagnosis of acute myocardial infarction based on assay for subforms of creatine kinase—MB. Circulation 1990; 82: 759–64.PubMedGoogle Scholar
  31. 31.
    Puleo PR, Meyer D, Wathen C, et al. Use of a rapid assay of subforms of creatine kinase MB to diagnose or rule out acute myocardial infarction. N Engl J Med 1994; 331: 561–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Panteghini M. Serum isoforms of creatine kinase isoenzymes. Clin Biochem 1988; 21: 211–18.PubMedCrossRefGoogle Scholar
  33. 33.
    Wu ABW. Creatine kinase isoforms in ischaemic heart disease. Clin Chem 1989; 35: 7–13.PubMedGoogle Scholar
  34. 34.
    Prager NP, Suzuki T, Jaffe AS, Sobel BE, Abendschein DR. The nature and time course of generation of the isoforms of MB creatine kinase in vivo. J Am Coll Cardiol 1992; 20: 414–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Pentilla K, Koukkunen H, Halinen M, Rantanen T, Pyorala K, Punnone PI. Myoglobin, creatine kinase MB isoforms and creatine kinase MB mass in early diagnosis of myocardial infarction in patients with acute chest pain. Clin Biochem 2002; 35: 647–53.CrossRefGoogle Scholar
  36. 36.
    Christenson RH, Azzazy HM. Biochemical markers of the acute coronary syndromes. Clin Chem 1998; 44: 1855–1864.PubMedGoogle Scholar
  37. 37.
    Gilkeson G, Stone MJ, Waterman M, Ting R, Gomez-Sanchez CE, Hull A, Willerson JT. Detection of myoglobin by radioimmunoassay in human sera: Its usefulness and limitations as an emergency room screening test for acute myocardial infarction. Am Heart J 1978; 95: 70–75.PubMedCrossRefGoogle Scholar
  38. 38.
    deWinter, Koster R, Sturk A, Sanders G. Value of myoglobin, troponin T and CKMB m in ruling out an acute myocardial infarction in the emergency room. Circulation 1995; 92: 3401–07.Google Scholar
  39. 39.
    Hetland O, Dickstein K. Cardiac markers in the early h of acute myocardial infarction: clinical performance of creatine kinase, creatine kinase MB isoenzyme (activity and mass concentration), creatine kinase MM and MB isoform ratios, myoglobin and cardiac troponin T. Scand J Clin Lab Invest 1996; 56: 701–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Jernberg T, Lindahl B, James S, Ranquist G, Wallentin L. Comparison between strategies using creatine kinase—MB (mass), myoglobin and troponin T in the early detection or exclusion of acute myocardial infarction in patients with chest pain and a non-diagnostic electrocardiogramm. Am J Cardiol 2000; 86: 1367–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Mair J, Morandell D, Genser N, Lechleitner P, Dienstl F, Puschendorf B. Equivalent early sensitivities of myoglobin, creatine kinase MB-mass, creatine kinase isoform ratios and cardiac tropinim I and T for acute myocardical infarction. Clin Chem 1995; 41: 1266–72.PubMedGoogle Scholar
  42. 42.
    Zimmerman J, Fromm R, Meyer D. Diagnostic marker cooperative study for the diagnosis of myocardial infarction. Circulation 1999; 99: 1671–77.PubMedGoogle Scholar
  43. 43.
    Pantighini M. Biochemical markers in acute coronary syndromes. Lab Medica International 2003; 20(6): 6–7.Google Scholar
  44. 44.
    Katus HA, Remppis A, Scheffold T, Dienderich KW, Kubler W. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and non-reperfused myocardial infarction. Am J Cardial 1991; 67: 1360–67.CrossRefGoogle Scholar
  45. 45.
    Adams JE, Schechtman KB, Landt Y, et al. Comparable detection of AMI by CK-MB isoenzyme and cardiac tropnin I. Clin Chem 1994; 40: 1291–95.PubMedGoogle Scholar
  46. 46.
    Tymchak WJ, Armstrong PW. Spectrum of ischaemic heart disease and the role of biochemical markers. Clin Lab Med 1997; 17: 701–25.PubMedGoogle Scholar
  47. 47.
    Rottbauer W, Greten T, Muller-Bard off M, et al. Troponin T:A diagnostic marker for myocardial infarction and minor cell damage. Eur Heart J 1996; 17: (Suppl. F), 3–8.PubMedGoogle Scholar
  48. 48.
    Hamm CW. Cardiac-specific troponins in acute coronary syndromes in Braunwald, E (ed.) Heart Disease: A text-book of cardiovascular Medicine. 5th ed 1997 Update vol. 3. p 1–10.Google Scholar
  49. 49.
    Ravikilde J, Horder M, Gerhardt W, Ljungdahl J, Petterson T, Tryding N, et al. Diagnostic performance and prognostie value of serum Troponin T in suspected acute myocardial infarction. Send J Clin Lab Invest 1993; 53: 677–85.CrossRefGoogle Scholar
  50. 50.
    Wu AHB, Feng YJ, Controls JH. Prognostic value of cardiac troponin I in chest pain patients. Clin Chem 1996; 42: 651–52.PubMedGoogle Scholar
  51. 51.
    Galvani M, Ottari F, Ferrini D, Ladenson JH, Destro A, Baccos D, et al. Prognostic influence of elevated values of cardiac troponin I in patients with unstable angina. Circulation 1997; 95: 2053–59.PubMedGoogle Scholar
  52. 52.
    Ohman EM, Armstrong PW, Christenson RH, Granger CB, Katus HA, Hamm CW, et al. Cardiac troponin T levels for risk stratification in acute ischaemia. N Engl J Med 1996; 335: 133–41.CrossRefGoogle Scholar
  53. 53.
    Olatidoye AG, Wu AH, Feng Y, Waters D. Prognostic role of Troponin T versus Troponin I in unstable Agnina Pectoris for cardiac events with meta-analysis comparing Published studies. Am J Cardiol 1998; 81: 1405–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Heidenreich PA, Allogiamento T, Melsop K, McDonald KM, Alan SGo, Heatky MA. The prognostic valve of troponin in patients with non-ST elevation acute coronary syndromes: a meta analysis. J Am Coll Cardiol 2001; 38: 478–85.PubMedCrossRefGoogle Scholar
  55. 55.
    Rao SV, Ohman EM, Granger CB, et al. Prognostic value of isolated troponin elevations across the spectrum of chest pain syndromes. Am J Cardiol 2003; 91: 936–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Apple FS, Henry TD, Berger CR, Landt YA. Early monitoring of serum cardiac Troponin I for assessment of coronary reperfusion following thrombolytic therapy. Am J Clin Path 1996; 105: 6–10.PubMedGoogle Scholar
  57. 57.
    Wu AH, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Waldes R Jr. National Academy of Clinical Biochemistry standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery disease. Clin Chem 1999; 45: 1104–21.PubMedGoogle Scholar
  58. 58.
    Bodor GS, Porterfield D, Voss E, et al. Cardiac troponin T composition in normal and regenerating human skeletal muscle (Abstract). Clin Chem 1995; 41: s148.Google Scholar
  59. 59.
    Ikeda J, Zenimoto M, Kita M, Mori M. Usefulness of cardiac troponin I in patients with acute myocardial infarction. Rinsho Byori 2002; 50: 982–86.PubMedGoogle Scholar
  60. 60.
    Sciries BM, Morrow DA. Troponins in acute coronary syndromes. Prog Cardiovasc Dis 2004; 47: 177–88.CrossRefGoogle Scholar
  61. 61.
    Vaananen HK, Syrjala H, Rahkila P, et al. Serum carbonic anhydrase III and myoglobin concentration in acute myocardial infarction. Clin Chem 1990; 36: 635–38.PubMedGoogle Scholar
  62. 62.
    Brogan GX Jr, Vuori J, Friedman S, Mc Cuskey CF, Thode HC Jr, Vaananen HK, Colling DS, Bock JL. Improved specificity of myoglobin plus carbonic anhydrase assary versus that of creatine kinase-MB for early diagnosis of acute myocardial infarction. Am Emerg Med 1996; 28: 245–46.CrossRefGoogle Scholar
  63. 63.
    Beuerle JR, Azzazy HM, Styba G, Duh SH, Christenson RH. Characteristics of myoglobin, Carbonic anhydrase III and the myoglobin/arbonic anhydrase III ratio in trauma, exercise and myocardial infarction patients. Clin Chim Acta 2000; 294: 115–28.PubMedCrossRefGoogle Scholar
  64. 64.
    Vuotikka P, Uusimaa P, Niemela M, Vaananen K, Vuori J, Peuhkurinen K. Serum myoglobin/Carbonic anhydrase III ration as a marker of reperfusion after myocardial infarction. Int J Cardiol 2003; 91: 137–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Krause EG, Rabitzsch G, Noll F, Mair J, Puschendorf B. Ghycogen phophorylase ischaemic injury and infarction. Mol Cell Biochem 1996; 160–161: 289–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Mair J. Glycogen phophorylase isoenzyme BB to diagnose ischaemic myocardial damage. Clin Chem Acta 1998; 272: 79–86.CrossRefGoogle Scholar
  67. 67.
    Mair J, Puschendorf B, Smidt J, Lechleitner P, Diestl F, Noll F et al. Early release of glycogen phosphorylase in patients with unstable angina and transient ST-T alteration. Br Heart J 1994; 72: 125–27.PubMedCrossRefGoogle Scholar
  68. 68.
    Mair P, Mair J, Krause EG, Balogh D, Puschendorf B, Rabitzsch G. Ghycogen phosphorylase isoenzyme BB mass release after coronary artery bypass grafting. Eur J Clin Chem Biochem 1994; 32: 543–47.Google Scholar
  69. 69.
    Wu AH. Analytical and clinical evaluation of new diagnostic tests for myocardial damage. Clin Chem Acta 1998; 272: 11–21.CrossRefGoogle Scholar
  70. 70.
    Kleine AH, Glatz JF, Van Nieuwenhoven FA, Vander Vusse GJ. Release of heart fatty acid-binding protein into plasma after acute myocardial infaction in man. Mol Cell Biochem 1992; 116: 155–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Ishii J, Wang JH, Naruse H, Taga S, Kinoshita M, Kurokawa H, Iwase M, Kondo T, Nomura M, Nagamura Y, Watanabe Y, Hishida H, Tanaka T, Kawamura K. Serum concentrations of myoglobin Vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem 1997; 43: 1372–78.PubMedGoogle Scholar
  72. 72.
    Okamoto F, Sohmiya K, Ohkaru Y, Kawamura K, Asayma K, Kimura H, Nishimura S, Ishii H, Sunahara N, Tanaka T. Human heart-type cytoplasmic fatty acid binding protein (H-FABP) for the diagnosis of acute myocardial infarction. Clinical evaluation of H-FABP in Comparison with myoglobin and creatine Kinase isoenzyme MB. Clin Chem Lab Med 2000; 38: 231–38.PubMedCrossRefGoogle Scholar
  73. 73.
    Chan CP, Sanderson JE, Glatz JF, Chang WS, Hempel A, Renneberg R. A superior early myocardial infarction marker Human heart-type fatty acid binding protein. Z Kardiol 2004; 93: 388–97.PubMedCrossRefGoogle Scholar
  74. 74.
    Seino Y, Tomita Y, Takano T, Ohbayashi K. Office cardiologists cooperative study on whole blood rapid panel tests in patients with suspicious acute myocardial infarction: Comparison between heart-type fatty acid binding protein and Troponin T tests. Circ J 2004; 68: 144–48.PubMedCrossRefGoogle Scholar
  75. 75.
    Hasegawa T, Yoshimura N, Oka S, Ootaki Y, Toyoda Y, Yamaguchi M. Evaluation of heart fatty acid-binding protein as rapid indicator of assessment of myocardial damage in pediatric cardiac surgery. Thorac Cardiovasc Surg 2004; 127: 1697–02.CrossRefGoogle Scholar
  76. 76.
    Isobe M, Nagai R, Ueda S, et al. Quantitative relationship between left ventricular function and serum cardiac myosin light chain I level after coronary reperfusion in patients with acute myocardial infarction. Circulation 1987; 76: 1251–61.PubMedGoogle Scholar
  77. 77.
    Panteghini M. Cardiac myosin light chains. Lab Med 1992; 23: 318–322.Google Scholar
  78. 78.
    Usui A, Kato K, Sara H, Minaguchi K, Abe T, Murase M, Tanaka M, Takeuchi E. S-100 a O protein in serum during acute myocardial infarction. Clin Chem 1990; 36: 639–41.PubMedGoogle Scholar
  79. 79.
    Kaneko N, Matsuda R, Hosoda S, Kajita T, Ohta Y. Measurement of plasma annexin V by ELISA in early detection of acute myocardial infarction. Chin Chim Acta 1996; 251: 65–80.CrossRefGoogle Scholar

Copyright information

© Association of Clinical BIochemists of India 2007

Authors and Affiliations

  • P. K. Nigam
    • 1
  1. 1.Dept. of CardiologyKing George's Medical UniversityLucknow

Personalised recommendations