Estuaries

, Volume 27, Issue 5, pp 753–769

Salt marsh litter and detritivores: A closer look at redundancy

  • Martin Zimmer
  • Steven C. Pennings
  • Tracy L. Buck
  • Thomas H. Carefoot
Article

Abstract

Most primary production of angiosperms in coastal salt marshes enters the detritivore food web; studies of this link have predominantly focused on one plant species (Spartina alterniflora) and one detritivore species (Littoraria irrorata). In mesocosm experiments, we studied the rates and pattern of decomposition of litter derived from four plant species common in southeastern United States coastal salt marshes and marsh-fringing terrestrial habitats. Crustanceans and gastropods were selected as detritivores feeding on, and affecting degradation of, the litter of two monocotyledons and two dicotyledons. Despite interspecific similarities in consumption, detritivores exhibited species-specific effects on litter chemistry and on the activity of litter-colonizing microbiota. The chemical composition of feces depended upon both the litter type and the detritivores’ species-specific digestive capabilities. Growth rates and survival of detritivores differed among litter species. Different salt marsh detritivores are likely to have different effects on decomposition processes in the salt marsh and cannot be regarded as functionally redundant nor can the litter of different plant species be regard ed as redundant as food for marsh detritivores.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Angradi, T. R., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92CrossRefGoogle Scholar
  2. Armstrong, R. A. andR. McGehee. 1980. Competitive exclusion.The American Naturalist 115:151–170.CrossRefGoogle Scholar
  3. Arsuffi, T. L. andK. Suberkropp. 1989. Selective feeding by shredders on leaf-colonizing stream fungi: Comparison of macroinvertebrate taxa.Oecologia 79:30–37.CrossRefGoogle Scholar
  4. Ashton, E. C. 2002. Mangrove searmid crab feeding experiments in Peninsular Malaysia.Journal of Experimental Marine Biology and Ecology 273:97–119.CrossRefGoogle Scholar
  5. Bardgett R. D. andK. F. Chan. 1999. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems.Soil Biology and Biochemistry 31:1007–1014.CrossRefGoogle Scholar
  6. Bärlocher, F. andS. Y. Newell. 1993. Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails.Journal of Experimental Marine Biology and Ecology 171:39–49.CrossRefGoogle Scholar
  7. Bärlocher, F. andS. Y. Newell. 1994a. Growth of the saltmarsh periwinkleLittoraria irrorata on fungal and cordgrass diets.Marine Biology 118:109–114.CrossRefGoogle Scholar
  8. Bärlocher, F. andS. Y. Newell. 1994b. Phenolics and proteins affecting palatability ofSpartina leaves to the gastropodLittoraria irrorata.Marine Ecology 15:65–75.CrossRefGoogle Scholar
  9. Bärlocher, F., S. Y. Newell, andT. L. Arsuffi. 1989. Digestion ofSpartina alterniflora Loisel, material with and without fungal constituents by the periwinkleLitloraria irrorata Say (Mollusca: Gastropoda).Journal of Experimental Marine Biology and Ecology 130:45–53.CrossRefGoogle Scholar
  10. Bertness, M. D. 1999. The Ecology of Atlantic Shorelines. Sinauer Associates, Inc. Sunderland, Massachusetts.Google Scholar
  11. Bertness, M. D. andA. M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community.Ecological Monographs 57:129–147.CrossRefGoogle Scholar
  12. Buck, T. L., G. A. Breed, S. C. Pennings, M. E. Chase, M. Zimmer, andT. H. Carefoot. 2003. Diet choice in an omnivorous salt marsh crab: Different food types, crab allometry, and habitat complexity.Journal of Experimental Marine Biology and Ecology 292:103–116.CrossRefGoogle Scholar
  13. Chalcraft, D. R. andW. J. Resetarits. 2003a. Mapping functional similarity of predators on the basis of trait similarity.The American Naturalist 162:390–402.CrossRefGoogle Scholar
  14. Chalcraft, D. R. andW. J. Resetarits. 2003b. Predator identity and ecological impacts: Functional redundancy or functional diversity?Ecology 84:2407–2418.CrossRefGoogle Scholar
  15. Conn, C. andJ. Dighton. 2000. Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity.Soil Biology and Biochemistry 32:489–496.CrossRefGoogle Scholar
  16. Covi, M. P. andR. T. Kneib. 1995. Intertidal distribution, population dynamics and production of the amphipodUhlorchestia spartinophila in a Georgia, USA, salt marsh.Marine Biology 121:447–455.CrossRefGoogle Scholar
  17. Cragg, R. G. andR. D. Bardgett. 2001. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes.Soil Biology and Biochemistry 33: 2073–2081.CrossRefGoogle Scholar
  18. Crowl, T. A., W. H. McDowell, A. P. Covich, andS. L. Johnson. 2001. Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream.Ecology 82:775–783.Google Scholar
  19. Duffy, J. E., K. S. Macdonald, J. M. Rhode., andJ. D. Parker. 2001. Grazer diversity, functional redundancy, and productivity in seagrass beds: An experimental test.Ecology 82:2417–2434.Google Scholar
  20. Facelli, J. M. andS. T. A. Pickett. 1991. Plant litter: Its dynamics and effects on plant community structure.Botanical Reviews 57:1–32.CrossRefGoogle Scholar
  21. Fell, E. P., K. A. Murphy, M. A. Peck, andM. L. Recchia. 1991. Re-establishment ofMelampus bidentatus and other macroinvertebrates on a restored impounded tidal marsh: Comparison of population above and below the impoundment dike.Journal of Experimental Marine Biology and Ecology 15:33–48.CrossRefGoogle Scholar
  22. Fell, E. P., N. C. Olmstead, E. Carlson, W. Jacob, D. Hitchcock, andG. Silber. 1982. Distribution and abundance of macroinvertebrates on certain Connecticut tidal marshes, with emphasis on dominant molluscs.Estuaries 5:235–239.CrossRefGoogle Scholar
  23. Fell, E. P., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline marshes by reed grass,Phragmites australis (Cav.) Trin. ex Steud., affect availability of prey resources for the mummichog,Fundulus heleroditus L.?Journal of Experimental Marine Biology and Ecology 222:59–77.CrossRefGoogle Scholar
  24. Graça, M. A. S., L. Maltby, andP. Calow. 1993. Importance of fungi in the diet ofGammarus pulex andAsellus aquaticus I. feeding strategies.Oecologia 93:139–144.Google Scholar
  25. Graça, M. A. S., S. Y. Newell, andR. T. Kneib. 2000. Grazing rates of organic matter and living fungal biomass of decayingSpartina alterniflora by three species of salt marsh invertebrates.Marine Biology 136:281–289.CrossRefGoogle Scholar
  26. Green, P. T., P. S. Lake, andD. J. O’Dowd. 1999. Monopolization of litter processing by a dominant land crab on a tropical oceanic island.Oecologia 119:435–444.CrossRefGoogle Scholar
  27. Briffiths, B. S., K. Ritz, R. D. Bardgett, R. Cook, S. Christensen, F. Ekelund, S. J. Sørensen, E. Bååth, J. Bloem, P. C. de Ruiter, J. Dolfing, andB. Nicolardot. 2000. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity-ecosystem function relationship.Oikos 90:279–294.CrossRefGoogle Scholar
  28. Hardin, G. 1960. The competitive exclusion principle.Science 131:1292–1298.CrossRefGoogle Scholar
  29. Jonsson, M. andB. Malmqvist. 2000. Ecosystem process rate increases with animal species richness: Evidence from leafeating, aquatic insects.Oikos 89:519–523.CrossRefGoogle Scholar
  30. Jonsson, M., B. Malmqvist, andP.-O. Hoffstein. 2001. Leaf litter breakdown rates in boreal streams: Does shredder species richness matter?Freshwater Biology 46:161–171.CrossRefGoogle Scholar
  31. Kaneko, N. andE. Salamanca. 1999. Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak-pine stand in Japan.Ecological Research 14:131–138.CrossRefGoogle Scholar
  32. Kautz, G. andW. Topp. 1998. Nachhaltige waldbauliche Maßnahmen zur Verbesserung der Bodenqualität.Forslwissenschaftliches Centralblatt 117:23–43.CrossRefGoogle Scholar
  33. Kemp, P. F., S. Y. Newell, andC. S. Hopkinson. 1990. Importance of grazing on the salt marsh grassSpartina alterniflora to nitrogen turnover in a macrofaunal detritivore,Littorina irrorata, and to decomposition of standing-deadSpartina.Marine Biology 104:311–319.CrossRefGoogle Scholar
  34. Kneib, R. T., S. Y. Newell, andE. T. Hermeno. 1997. Survival, growth and reproduction of the saltmarsh amphipodUhlorchestia spartinophila reared on natural diets of senescent and deadSpartina alterniflora leaves.Marine Biology 128:423–431.CrossRefGoogle Scholar
  35. Lawton, J. H., S. Naeem, L. J. Thompson, A. Hector, andM. J. Crawley. 1998. Biodiversity and ecosystem function: Getting the Ecotron experiment in its correct context.Functional Ecology 12:848–852.Google Scholar
  36. Motulsky, H. 1995. Intuitive Biostatistics. Oxford University Press, New York.Google Scholar
  37. Newell, S. Y. 1993. Decomposition of shoots of a salt marsh grass.Advances in Microbial Ecology 13:301–326.Google Scholar
  38. Newell, S. Y. 1996. Established, and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones.Journal of Experimental Marine Biology and Ecology 200:187–206.CrossRefGoogle Scholar
  39. Newell, S. Y. andF. Bärlocher. 1993. Removal of fungal and total organic material from decaying cordgrass leaves by shredder snails.Journal of Experimental Marine Biology and Ecology 171:39–49.CrossRefGoogle Scholar
  40. Newell, S. Y., R. D. Fallon, R. M. Cal Rodriguez, andL. C. Groene. 1985. Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead salt marsh plants.Oecologia 68:73–79.CrossRefGoogle Scholar
  41. Nixon, S. W. andC. A. Oviatt. 1973. Ecology of a New England salt marsh.Ecological Monographs, 43:463–498.CrossRefGoogle Scholar
  42. Pennings, S. C. andM. D. Bertness. 2001. Salt marsh communities, p. 289–316.In M. D. Bertness, S. D. Gaines, and M. E. Hay (eds.), Marine Community Ecology. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  43. Pennings, S. C., T. H. Carefoot, E. L. Siska, M. E. Chase, andT. A. Page. 1998. Feeding preferences of a generalist saltmarsh crab: Relative importance of multiple plant traits.Ecology 79:1968–1979.CrossRefGoogle Scholar
  44. Pennings, S. C. andD. J. Moore. 2001. Zonation of shrubs in western Atlantic salt marshes.Oecologia 126:587–594.CrossRefGoogle Scholar
  45. Pennings, S. C., M. T. Nadeau, andV. J. Paul. 1993. Selectivity and growth of the generalist herbivoreDolabella auricularia feeding upon complementary resources.Ecology 74:879–890.CrossRefGoogle Scholar
  46. Ray, S. andM. Straskraba. 2001. The impact of detritivorous fishes on a mangrove estuarine system.Ecological Modelling 140:207–218.CrossRefGoogle Scholar
  47. Richards, S. A., R. M. Nisbet, W. G. Wilson, andH. P. Possingham. 2000. Grazers and diggers: Exploitation competition and coexistence among foragers with different feeding strategies on a single resource.The American Naturalist 155:266–279.CrossRefGoogle Scholar
  48. Rietsma, C. S., I. Valiela, andR. Buchsbaum. 1988. Detrital chemistry, growth, and food choice in the salt-marsh snail (Melampus bidentatus).Ecology 69:261–266.CrossRefGoogle Scholar
  49. Rietsma, C. S., I. Valiela, andA. Sylvester-Serianni. 1982. Food preferences of dominant salt marsh herbivores and detritivores.Marine Ecology 3:179–189.CrossRefGoogle Scholar
  50. Silliman, B. R. andM. D. Bertness. 2002. A trophic cascade regulates salt marsh primary production.Proceedings of the National Academy of Sciences 99:10500–10505.CrossRefGoogle Scholar
  51. Silliman, B. R. andS. Y. Newell. 2003. Fungal farming in a snail.Proceedings of the National Academy of Sciences 100:15643–15648.CrossRefGoogle Scholar
  52. Silliman, B. R. andJ. C. Zieman. 2001. Top-down control ofSpartina alterniflora production by periwinkle grazing in a Virginia salt marsh.Ecology 82:2830–2845.Google Scholar
  53. Skov, M. V. andR. G. Hartnoll. 2002. Paradoxical selective feeding on a low-nutrient diet: Why do mangrove crabs eat leaves?Oecologia 131:1–7.CrossRefGoogle Scholar
  54. Smalley, A. E. 1960. Energy flow of a salt marsh grasshopper population.Ecology 41:785–790.CrossRefGoogle Scholar
  55. Sulkava, P. andV. Huhta. 1998. Habitat patchiness affects decomposition and faunal diversity: A microcosm experiment on forest floor.Oecologia 116:390–396.CrossRefGoogle Scholar
  56. Sulkava, P., V. Huhta, J. Laakso, andE.-R. Gyl’en. 2001. Influence of soil fauna and habitat patchiness on plant (Betula pendula) growth and carbon dynamics in a microcosm experiment.Oecologia 129:133–138.CrossRefGoogle Scholar
  57. Taiti, S. andF. Ferrara. 1991. Terrestrial isopods (Crustacea) from the Hawaiian IslandsBishop Museum Occasional Papers 31:202–227.Google Scholar
  58. Teal, J. M. 1962. Energy flow in the saltmarsh ecosystem of Georgia.Ecology 43:614–624.CrossRefGoogle Scholar
  59. Valiela, I. andC. S. Rietsma. 1984. Nitrogen, phenolic acids, and other feeding cues for salt marsh detritivores.Oecologia 63:350–356.CrossRefGoogle Scholar
  60. Valiela, I. andJ. M. Teal. 1979. Inputs, outputs and interconversions of nitrogen in a salt marsh ecosystem., p. 399–414.In R. L. Jefferies and A. J. Davy (eds.), Ecological Processes in Coastal Environments. Blackwell Scientific Publications, Oxford, U.K.Google Scholar
  61. Valiela, I., J. Wilson, R. Buchsbaum, C. Rietsma, D. Bryant, K. Foreman, andJ. Teal. 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores.Bulletin of Marine Science 35:261–269.Google Scholar
  62. Waldbauer, G. P. andS. Friedman. 1991. Self-selection of optimal diets by insects.Annual Review of Entomology 36:43–63.CrossRefGoogle Scholar
  63. Wardle, D. A. 1999. How soil food webs make plants grow.Trends in Ecology and Evolution 14:418–420.CrossRefGoogle Scholar
  64. White, T. C. R. 1993. The inadequate environment: Nitrogen and the abundance of animals. Springer Berlin.Google Scholar
  65. Wiegert, R. G. and B. J. Freeman. {dy1990}. Tidal salt marshes of the southeast Atlantic coast: A community profile. U.S. Department of the Interior, Fish and Wildlife Service, Biological Report 85 (7. 29), Washington, D.C.Google Scholar
  66. Wood, T. G. 1974. Field investigations on the decomposition of leaves ofEucalyptus delegatensis in relation to environmental factors.Pedobiologia 14:343–371.Google Scholar
  67. Zimmer, M. 2002. Is decomposition of woodland leaf litter influenced by its species richness?Soil Biology and Biochemistry 34: 277–284.CrossRefGoogle Scholar
  68. Zimmer, M., S. C. Pennings.,T. L. Buck, andT. H. Carefoot. 2002. Species-specific patterns of litter processing by terrestrial isopods (Isopoda: Oniscidea) in high intertidal salt marshes and coastal forests.Functional Ecology 16:596–607.CrossRefGoogle Scholar
  69. Zimmer, M. andW. Topp. 1999. Relations between woodlice (Isopoda: Oniscidea), and microbial density and activity in the field.Biology and Fertility of Soils 30:117–123.CrossRefGoogle Scholar
  70. Zimmer, M. andW. Topp. 2000. Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea).Journal of Animal Ecology 69:1071–1082.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2004

Authors and Affiliations

  • Martin Zimmer
    • 1
  • Steven C. Pennings
    • 2
  • Tracy L. Buck
    • 2
  • Thomas H. Carefoot
    • 3
  1. 1.Zoologisches Institut—LimnologieChristian-Albrechts-UniversitätKielGermany
  2. 2.University of Georgia Marine InstituteSapelo Island
  3. 3.Department of ZoologyUniversity of British ColumbiaVancouverCanada
  4. 4.Department of Biology and BiochemistryUniversity of HoustonHouston
  5. 5.Baruch Marine LaboratoryNorth Inlet-Winyah Bay NERRGeorgetown

Personalised recommendations