Transition Metal Chemistry

, Volume 17, Issue 5, pp 401–403 | Cite as

Synthesis and reactions with donor ligands of the mixed halide seven-coordinate molybdenum(II) complex [MoClI(CO)3(NCMe)2]

  • Paul K. Baker
  • Tracey Birkbeck
  • Stefan Bräse
  • Adrian Bury
  • H. Margaret Naylor
Full Papers


The complexfac-[Mo(CO)3(NCMe)3] (preparedin situ) reacts with an equimolar amount of ICl to give the oxidised product [MoClI(CO)3(NCMe)2] (1) in high yield. Equimolar quantities of (1) and L (L=PPh3, AsPh3 or SbPh3) react to yield the iodo-bridged dimers [Mo-(μ-I)Cl(CO)3L]2 (2)–(4). The reaction of [MoClI(CO)3(NCMe)2] with two equivalents of L (L=PPh3, AsPh3 or SbPh3) yields the acetonitrile-displaced products [MoClI(CO)3L2] (5)–(7). The bidentate ligands L^L {L^L=2,2-bipyridyl (bipy), 1,10-phenanthroline (1,10-phen), CyN=CHCH=NCy, Ph2P(CH2)nPPh2 (n=1–4)} react with an equimolar quantity of (1) to give [MoClI(CO)3(L^L)] (8)–(14). The compounds have been characterised by elemental analysis and spectroscopy. Magnetic susceptibility measurements show the compounds to be diamagnetic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. Lewis and R. Whyman,J. Chem. Soc. A, 77 (1967).Google Scholar
  2. (2).
    R. Colton, G. P. Scollary and I. B. Tomkins,Aust. J. Chem.,21, 15 (1968).Google Scholar
  3. (3).
    W. S. Tsang, D. W. Meek and A. Wojcicki,Inorg. Chem.,7, 1263 (1968).CrossRefGoogle Scholar
  4. (4).
    R. Colton and G. R. Scollary,Aust. J. Chem.,21, 1435 (1968).Google Scholar
  5. (5).
    J. R. Moss and B. L. Shaw,J. Chem. Soc. A., 595 (1970).Google Scholar
  6. (6).
    R. Colton,Coord. Chem. Rev.,6, 269 (1971).CrossRefGoogle Scholar
  7. (7).
    A. D. Westland and N. Muriithi,Inorg. Chem.,12, 2356 (1973).CrossRefGoogle Scholar
  8. (8).
    P. K. Baker and S. G. Fraser,Inorg. Chim. Acta,116, L3 (1986).CrossRefGoogle Scholar
  9. (9).
    P. K. Baker, S. G. Fraser and M. G. B. Drew,J. Chem. Soc., Dalton Trans., 2729 (1988).Google Scholar
  10. (10).
    F. J. Arnaiz, G. Garcia, V. Riera, Y. Dromzée and Y. Jeannin,J. Chem. Soc., Dalton Trans., 819 (1987).Google Scholar
  11. (11).
    K-B. Shu, K. S. Lion, S. L. Wang and S. C. Wei,Organometallics,9, 669 (1990).CrossRefGoogle Scholar
  12. (12).
    M. S. Balakrishna, S. S. Krishnamurthy and H. Manohar,Organometallics,10, 2522 (1991).CrossRefGoogle Scholar
  13. (13).
    M. H. B. Stiddard and R. E. Townsend,J. Chem. Soc. A., 2355 (1969).Google Scholar
  14. (14).
    P. K. Baker, S. G. Fraser and E. M. Keys,J. Organomet. Chem.,309, 319 (1986).CrossRefGoogle Scholar
  15. (15).
    D. P. Tate, W. R. Knipple and J. M. Augl,Inorg. Chem.,1, 433 (1962).CrossRefGoogle Scholar
  16. (16).
    J. M. Kliegman and R. K. Barnes,Tetrahedron Lett.,24, 1953 (1969).CrossRefGoogle Scholar
  17. (17).
    M. G. B. Drew, P. K. Baker, E. M. Armstrong and S. G. Fraser,Polyhedron,7, 245 (1988).CrossRefGoogle Scholar
  18. (18).
    P. K. Baker and S. G. Fraser,Transition Met. Chem.,12, 560 (1987).CrossRefGoogle Scholar
  19. (19).
    M. G. B. Drew,Prog. Inorg. Chem.,23, 67 (1977) and refs. therein.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Paul K. Baker
    • 1
  • Tracey Birkbeck
    • 1
  • Stefan Bräse
    • 1
  • Adrian Bury
    • 1
  • H. Margaret Naylor
    • 1
  1. 1.Department of ChemistryUniversity of WalesBangor, GwyneddUK

Personalised recommendations