Economic Botany

, Volume 51, Issue 1, pp 20–38 | Cite as

In Situ conservation of maize in Mexico: Genetic diversity and Maize seed management in a traditional community

  • Dominique Louette
  • André Charrier
  • Julien Berthaud
Article

Abstract

Results from a study of maize varieties and seed sources in a traditional community in Jalisco, Mexico, raise questions about the relationship between genetic erosion and the introduction of varieties. The relevance of models for in situ conservation of crop genetic resources based on geographical isolation of a community is discussed. The morphophenological diversity of local materials is shown to be enhanced by introductions of both improved cultivars and landraces from farmers in other communities. On the other hand, the geographical point of reference for defining “local” landrace is shown to be larger than the community itself. Farmers will classify seed obtained from other farmers in and outside the community as that of a local landrace if it resembles their own according to the phenotypic characteristics they use to distinguish varieties. Maize diversity in this community is then the result of a certain level of introduction of genetic material and not of geographical isolation.

Key Words

Zea mays landraces genetic resources in situ conservation germplasm exchange Biosphere Reserve 

Conservation in situ de Mais au Mexique: Diversite Genetique et Gestion des Semences dans Une Communaute Traditionnelle

Résumé

L’étude des variétés de maïs et de l’origine de leurs semences dans une communauté traditionnelle de l’état de Jalisco au Mexique réfute la relation de cause à effet traditionnellement établie entre l’introduction de variétés exogénes et l’érosion génétique. Les résultats remettent en question la pertinence de modèles de conservation in situ des ressources génétiques de plantes cultivées basés sur l’isolement géographique d’une communauté. A Cuzalapa, les variétés améliorées et les variétés paysannes introduites d’autres régions sont source de diversité morphophénologique. D’autre pan, l’échelle géographique à laquelle une variété paysanne peut être définie comme “locale” dépasse la communauté paysanne. Un lot de semences introduit présentant les mêmes caractéristiques phénotypiques qu ’une variété locale peut être considéré par les agriculteurs comme faisant partie de ce cultivar et ne plus s’en distinguer. La diversité génétique du maïs dans cette zone est donc le résultat d’un certain niveau d’introduction de matériel génétique et non de son isolement géographique.

Conservacion in situ de Maiz en Mexico: Diversidad Genetica y Manejo de las Semillas en Una Comunidad Tradicional

Resumen

El estudio de las variedades de maíz y del origen de las semillas en una comunidad tradicional del estado de Jalisco, en México, cuestiona la relación de causaefecto tradicionalmente establecida entre la introducción de variedades foráneas y la erosión genética. Se discute sobre la pertinencia de modelos de conservación in situ de los recursos genéticos de plantas cultivadas basados en el aislamiento geográfico de una comunidad. En Cuzalapa, las variedades mejoradas y las variedades campesinas introducidas de otras regiones son fuente de diversidad morfofenológica. Por otro lado, la escala geográfica a la que una variedad campesina puede ser definida como “local” rebasa el nivel de la comunidad. Un lote de semilla introducido que presenta las características fenotípícas de una variedad local puede ser considerado por los agricultores como parte de esta variedad y no distinguirse de ella. Por lo tanto, la diversidad genética del maíz en esta zona es el resultado de cierto nivel de introducción de material genético y no de su aislamiento geográfico.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Altieri, M. A., and L. C. Merrick. 1987. In situ conservation of crop genetic resources through maintenance of traditional farming systems. Economic Botany 41:86–96.Google Scholar
  2. Bellon, M. R. 1995. The dynamics of crop infraspecific diversity: a conceptual framework at the farmer level. Economic Botany 50:26–39.Google Scholar
  3. —,and S. B. Brush. 1994. Keepers of maize in Chiapas, Mexico. Economic Botany 48:196–209.Google Scholar
  4. Benz, B. F. 1988. In situ conservation of the genusZea in the Sierra de Manantlán Biosphere Reserve. Pages 59–69in Recent advances in the conservation and utilization of genetic resources: Proceedings of the Global Maize Germplasm Workshop. CIMMYT, Mexico D. F. Mexico.Google Scholar
  5. -, n.d. On the origin, evolution and dispersal of maize.In M. Blake, ed., The beginnings of agriculture and development of complex societies: the prehistory of the pacific basin. Washington State University Press, Pullman, Washington, USA.Google Scholar
  6. —,and H. H. Iltis. 1992. Evolution of female sexuality in maize ear (Zea mays L. subsp.mays—Gramineae). Economic Botany 46:212–222.Google Scholar
  7. —,L. R. Sánchez V., and J. F. Santana M. 1990. Ecology and ethnobotany ofZea diploperennis: preliminary investigations. Maydica 35:85–98.Google Scholar
  8. Bérard, L., A. Fragata, A. de Carvalho, P. Marchenay and J. Vieira da Silva. 1991. Cultivare locaux, éthnobiologie et développement. Pages 78–84in La conservation des espèces sauvages progénitrices des plantes cultivées. Collection Rencontres Environnement, n°8. Actes du colloque organisé par le Conseil de l’Europe en collaboration avec l’Office des Réserves Naturelles d’Israël. Conseil de l’Europe, Strasbourg, France.Google Scholar
  9. Bommer, D. F. R. 1991. The historical development of international collaboration in plant genetic resources. Pages 3–12in Th.J. L. van Hintun, L. Frese and P. M. Perret, eds., Searching for new concepts for collaborative genetic resources management: Papers of the EUCARPIA/IBPGR symposium, Wageningen, The Netherlands, 3–6 Dec. 1990, International Crop Networks Series n°4. International Board for Plant Genetic Resources, Rome, Italy.Google Scholar
  10. Boster, J. S. 1985. Selection of perceptual distinc-tiveness: evidence from Aguaruna cultivars ofManihot esculenta. Economic Botany 39:310–325.Google Scholar
  11. Brush, S. B. 1991. A farmer-based approach to conserving crop germplasm. Economic Botany 45: 153–165.Google Scholar
  12. —. 1992. Farmer’s rights and genetic conservation in traditional farming systems. World Development 20:1617–1630.CrossRefGoogle Scholar
  13. —,H. J. Carney, and Z. Huaman. 1981. Dynamics of andean potato agriculture. Economic Botany 35:70–88.Google Scholar
  14. CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo). 1993. Genetic resources preservation, regeneration, maintenance and utilization. Briefing book. CIMMYT, Mexico, D. F. Mexico.Google Scholar
  15. Cohen, J. I., J. B. Alcorn, and S. Potter. 1991. Utilization and conservation of genetic resources: international projects for sustainable agriculture. Economic Botany 45:190–199.Google Scholar
  16. Cooper, D., R. Vellve, and H. Hobbelink, eds. 1992. Growing diversity: genetic resources and local food security. IT Publication, GRAIN, London, England.Google Scholar
  17. Dennis, J. V.,Jr. 1987. Farmer management of rice variety diversity in northern Thailand. Unpublished Ph.D. dissertation, Cornell University. Michigan. University Microfilms, Ann Arbor. USA.Google Scholar
  18. FAO (Food and Agriculture Organization of the United Nations). 1989. Ressources phytogéné-tiques: leur conservation in situ au service des besoins humains. FAO, Rome, Italy.Google Scholar
  19. Harlan, J. R. 1992. Crops and man. American Society of Agronomy and Crop Science Society of America, Madison, Wisconsin, USA.Google Scholar
  20. Haudricourt, A. G., and L. Hedin. 1987. L’homme et les plantes cultivées. A.-M. Métaillié, Paris, France.Google Scholar
  21. Hernández X., E. 1988. Experiences in the collection of maize germplasm. Pages 1–7in Recent advances in the conservation and utilization of genetic resources: Proceedings of the Global Maize Germplasm Workshop. CIMMYT, Mexico D. F, Mexico.Google Scholar
  22. Iltis, H. H. 1974. Freezing the genetic landscape: the preservation of diversity in cultivated plants as an urgent social responsibility of plant geneticist and plant taxonomist. Maize Genetics Cooperation News Letter 48:199–200.Google Scholar
  23. Jardel P., E., Coord. 1992. Estratégia para la conservación de la Reserva de la Biosfera Sierra de Manantián. Laboratorio Natural Las Joyas, Editorial Universidad de Guadalajara, Guadalajara, Jal., Mexico.Google Scholar
  24. Keyston Center. 1991. Final consensus report: global initiative for the security and sustainable use of plant genetic resources. Third Plenary Session, 31 May–4 June 1991. Oslo, Norway, Keystone International Dialogue Series on Plant Genetic Resources, Oslo, Norway.Google Scholar
  25. Laitner, K., and B. F. Benz. 1994. Las condiciones culturales y ambientales en la reserva de la biofera Sierra de Manantlán en tiempo de la conquista: una perspectiva de los documentos etnohistóricos secundarios. Estudios del hombre, Universidad de Guadalajara, Guadalajara, México. 1:15–45.Google Scholar
  26. Louette, D. 1994. Gestion Traditionnelle de variétés de maïs dans la réserve de la Biosphère Sierra de Manantlán (RBSM, états de Jalisco et Colima, Mexique) et conservation in situ des ressources génétiques de plantes cultivées. Thèse de doctotat, Ecole Nationale Supérieure Agronomique de Montpellier, Montpellier, France.Google Scholar
  27. Martínez R., L. M., J. J. Sandoval L., and R. D. Guevara G. 1991. Climas de la reserva de la biosfera Sierra de Manantlán y su área de influencia. Agrociencia 2:107–119.Google Scholar
  28. —,and J. J. Sandoval L. 1993. Levantamiento taxonómico de suelos de la subcuenca de Cuzalapa, Sierra de Manantlán, JAL. Terra 11:3–11.Google Scholar
  29. Merrick, L. C. 1990. Crop genetic diversity and its conservation in traditional agroecosystems. Pages 3–11in M. A. Altieri and S. B. Hecht, eds., Agroecology and small farm developpment. CRC Press, Boca Raton, Florida, USA.Google Scholar
  30. Montecinos, C., and M. A. Altieri. 1991. Status and trends in grass-roots crop genetic conservation efforts in Latin America. CLADES and University of California, Berkley, California, USA.Google Scholar
  31. Oldfield, M. L., and J. B. Alcorn. 1987. Conservation in traditional agroecosystems. Bioscience 37: 199–208.CrossRefGoogle Scholar
  32. Olivier, L., and M. Chauvet. 1991. In situ conservation at the interface between crop genetic resources andGoogle Scholar
  33. Sperling, L., and M. E. Loevinsohn. 1993. The dynamics of adoption: distribution and mortality of bean varieties among small farmers in Rwanda. Agricultural Systems 41:441–453.CrossRefGoogle Scholar
  34. Toledo, V. M. 1990. The ecological rationality of peasant production. Pages 53–60in M. A. Altieri and S. B. Hecht, eds., Agroecology and small farm developpment. CRC Press, Boca Raton, Florida, USA.Google Scholar
  35. Wellhausen, E. J., L.M. Roberts, and E. Hernández X. with P. Mangelsdorf. 1952. Races of maize in Mexico: their origin, characteristics and distribution. Bussey Institution, Harvard University, Cambridge, Massachussetts, USA.Google Scholar
  36. Wilkes, H. G., and S. Wilkes. 1972. The green revolution. Environment 14:32–39.Google Scholar
  37. Williams, J. T. 1988. Identifying and protecting the origin of our plants. Pages 240–247in E. O. Wilson, ed., Biodiversity. National Academy of Sciences, Washington, D.C., USA.Google Scholar

Copyright information

© The New York Botanical Garden, Bronx, NY 10458 U.S.A 1997

Authors and Affiliations

  • Dominique Louette
    • 1
  • André Charrier
    • 2
  • Julien Berthaud
    • 3
  1. 1.Instituto Manantlán de Ecología y Conservación de la Biodiversidad IMECBIOUniversidad de GuadalajaraAutlánJaliscoMéxico
  2. 2.Chaire de PhytotechnieEcole Nationale Supérieure Agronomique de Montpellier ENSAMMontpellier cedexFrance
  3. 3.Unité de Recherche Diversité Génétique et Amélioration des PlantesInstitut Français de la Recherche Scientifique pour le Développement en Coopération ORSTOMMontpellier cedexFrance

Personalised recommendations