Circaseptan (about-7-day) bioperiodicity — spontaneous and reactive — and the search for pacemakers

  • Francis Levi
  • Franz Halberg


A built-in (genetically determined) about-7-day (circaseptan) period comes to the fore as a desynchronized feature of human time structure in the urinary excretion of 17-ketosteroids by a clinically healthy man: during several years following an endocrine intervention (the self-administration of testosterone suppositories), a circaseptan rhythm (which during the preceding decade had revealed a period of precisely 7 days) deviated slightly, yet with statistical significance, from the environmental week. A second line of evidence for an intrinsic circaseptan component stems from the demonstration of statistically significant differences in timing of a circaseptan rhythm in springtail oviposition. A third line of evidence documents prominent circaseptan rhythmicity after the application of a single stimulus (devoid in itself of any circaseptan information). Such single stimulus induction, amplification and/or synchronization also documents the clinical and biologic importance of built-in circaseptan rhythms that were previously often misinterpreted as being purely reactive: a circaseptan spectral component is remarkably prominent in mammalian organ transplant rejection, both in the clinic and in the laboratory. In the latter case, in the absence of any weekly cycles in hospital routine, including treatment schedules, circaseptan components characterize the rejection of the rat kidney, pancreas and heart. Much additional information here reviewed reveals the occurrence of periods of about 7 days. Their implications for transplant and other chronoimmunology as well as biology in general, and their clinical applications in drug treatment, include the need to weld circaseptan timing to circadian timing and dosing. A dramatic documentation of this need stems from the circumstance that pretreatment for one week with the same total dose of the same substance (a polysaccharide — Lentinan) accelerates or retards cancerous growth (hence shortens or lengthens survival) as a function of interactive circaseptan and circadian rhythms.


Chronobiologic surveillance Chronoimmunomodulation Circaseptan bioperiodicity Computer Hormone excretion Immunity Kidney transplantation Rhythmometry Tumors 


  1. 1.
    Abbot C. G.: Solar variation and weather, a summary of the evidence, completely illustrated and documented — The Smithsonian Institution Publ. 4545, 1943.Google Scholar
  2. 2.
    Abbot C. G.: The sun’s short regular variation and its large effect on terrestrial temperatures — The Smithsonian Institution Publ. 3893, 1947.Google Scholar
  3. 3.
    Allert U.: Untersuchungen über einen biologischen Strahlenschutz 84. Mitteilung: Zur Frage der Beeinflussbarkeit der Strahlenschäden am spezifischen Antikörper bildenden Zellsystem durch Strahlenschutz-Substanzen — Strahlentherapie135, 227, 1968.PubMedGoogle Scholar
  4. 4.
    Arrhenius S.: Cosmic influences on physiological phenomena — Scand. Arch. Physiol.8, 367, 1898.Google Scholar
  5. 5.
    Ask-Upmark E.: On periodic fever — Acta Soc. med. suec.64, 5, 1938.Google Scholar
  6. 6.
    Ask-Upmark E.: Den Kvinnlinga Genitalcyklen och nagra Invärtesmedicinska Sjukdomstillstand — Svenska Läk.-Sällsk. Förh.9, 1, 1945.Google Scholar
  7. 7.
    Baker B. M.: Undulant fever presenting the clinical syndrome of intermittent hydrarthrosis — Arch. intern. Med.44, 128, 1929.Google Scholar
  8. 8.
    Baldwin D., Landahl H. D., Schwartz T. B.: The role of fluctuations of sodium balance in the regulation of body sodium stores — Metabolism12, 1032, 1963.PubMedGoogle Scholar
  9. 9.
    Barrett M. K., Hansen W. H.: Undulations in the time-response curve for tumor immunity after primary immunization with washed erythrocytes — J. nat. Cancer Inst.18, 57, 1957.PubMedGoogle Scholar
  10. 10.
    Barron M.: Unique features of Hodgkin’s disease — Arch. Path. Lab. Med.2, 657, 1926.Google Scholar
  11. 11.
    Baulieu E. E.: Steroid receptors and hormone receptivitys new approaches in pharmacology and therapeutics. In:Heuson J. C., Mattheim W. H., Rosenczweij M. (Eds): Breast cancer: trends in research and treatment. Raven Press, New York, 1976; p. 165.Google Scholar
  12. 12.
    Besarab A., Ihle B. U.: Allograft function, circaseptan rejection rhythms, and proteinuria in human transplantation — Kidney int.16, 940, 1979.Google Scholar
  13. 13.
    Bixby L., Levi F., Haus R., Sackett L., Haus E., Halberg F., Hrushesky W.: Circaseptan aspects of cisplatine (CP) murine nephrotoxicity. In: Proc. XIV Int. Conf. Int. Soc. Chronobiol. Hannover, July 8–12, 1979.Google Scholar
  14. 14.
    Bray G. A.: Rhythmic changes in renal function in the rat — Amer. J. Physiol.209, 1187, 1965.PubMedGoogle Scholar
  15. 15.
    Britton S., Moller G.: Regulation of antibody synthesis againstEscherichia coli endotoxin. I. Suppressive effect of endogenously produced and passively transferred antibodies — J. Immunol.100, 1326, 1968.PubMedGoogle Scholar
  16. 16.
    Butler T. B.: The atmospheric system developed. A. Selleck, Norwalk, Conn., 1870.Google Scholar
  17. 17.
    Byram J. E., Scher A., DiPietro J., von Lichtenberg F.: Potentiation of schistosome granuloma formation by Lentinan, a T-cell adjuvant — Amer. J. Path.94, 201, 1979.PubMedGoogle Scholar
  18. 18.
    Chiba Y., Chiba K., Halberg F., Cutkomp L. K.: Longitudinal evaluation of circadian rhythm characteristics and their circaseptan modulation in an apparently healthy couple. In:McGovern J., Reinberg A., Smolensky M. (Eds): Chronobiology in allergy and immunology. C. C. Thomas, Springfield, Illinois, 1977; p. 17.Google Scholar
  19. 19.
    Chiba Y., Cutkomp L. K., Halberg F.: Circaseptan (7-day) oviposition rhythm and growth of springtail,Folsomia candida (Collembola: Isotomidae) — Int. J. Cycle Res.4, 59, 1973.Google Scholar
  20. 20.
    Chihara G., Carandente F., Halberg F.: Chronoimmunology and temporal aspects of Lentinan effect upon LOU rat immunocytoma growth — Proc. AACR/ASCO20, 111, 1979.Google Scholar
  21. 21.
    Clayton H. H.: A 7-day weather period — Amer. meteor. J.2, 162, 1885.Google Scholar
  22. 22.
    Clayton H. H.: World weather records, collected from official sources by Dr. Felix Epner — Smithsonian Misc. Collection 90, 1934.Google Scholar
  23. 23.
    Clinton B. A., Weigle W. O.: Cellular events during the reduction of experimental thyroiditis in the rabbit — J. exp. Med.136, 1605, 1972.PubMedCrossRefGoogle Scholar
  24. 24.
    Cornelius E. A., Yunis E. J., Martinez C.: Parabiosis intoxication: clinical, hematologic and serologic features — Transplantation5, 112, 1967.CrossRefGoogle Scholar
  25. 25.
    Cornelius E. A., Yunis E. J., Martinez C.: Cyclic phenomena in the graft-versus-host reaction — Proc. Soc. exp. Biol. (N.Y.)131, 680, 1969.Google Scholar
  26. 26.
    Debry G., Bleyer R., Reinberg A.: Circadian, circannual and other rhythms in spontaneous nutrient and caloric intake of healthy four-year olds — Diabète et Métab.1, 91, 1975.Google Scholar
  27. 27.
    Denham S., Grant C. K., Hall J. G., Alexander P.: The occurrence of two types of cytotoxic lymphoid cells in mice immunized with allogeneic tumor cells — Transplantation9, 366, 1970.CrossRefGoogle Scholar
  28. 28.
    Derer L.: Concealed macroperiodicity in the reactions of the human organism — Rev. czech. Med.2, 277, 1956.PubMedGoogle Scholar
  29. 29.
    Derer L.: Rhythm and proliferation with special reference to the 6-day rhythm of blood leukocyte count — Neoplasma (Bratisl.)7, 117, 1960.Google Scholar
  30. 30.
    De Vecchi A., Carandente F., Fryd D. S., Halberg F., Sutherland D. E., Howard R. J., Simmons R. L., Najarian J. S.: Circaseptan (about-7-day) rhythms in human kidney allograft rejection in different geographic locations. In:Reinberg A., Halberg F. (Eds): Chronopharmacology — Advanc. Biosci.19, 193, 1979.Google Scholar
  31. 31.
    De Vecchi A., Halberg F., Sothern R. B., Cantaluppi A., Ponticelli C.: Circaseptan rhythmic aspects of rejection in treated patients with kidney transplant. In:Walker C. A., Winget C. M., Soliman K. F. A. (Eds): Chronopharmacology and Chronotherapeutics. Florida A & M University Foundation, Tallahassee, Florida, 1981; pp. 339–353.Google Scholar
  32. 32.
    Dionigi R., Zonta A., Albertario F., Galeazzi R., Bellinzona G.: Cyclic variation in the response of lymphocytes to phytohemagglutinin in healthy individuals — Transplantation16, 550, 1973.PubMedCrossRefGoogle Scholar
  33. 33.
    Friedrich G.: Theological Dictionary of the New Testament — W. B. Eerdmans, Grand Rapids, Michigan, 1976; vol. VII.Google Scholar
  34. 34.
    Gautherie M., Gros Ch.: Circadian rhythm alteration of skin temperature in breast cancer — Chronobiologia4, 1, 1977.PubMedGoogle Scholar
  35. 35.
    Gehlken K., Hildebrandt G., Franke M.: Psychophysical correlations in the course of treatment — Arch. phys. Ther. (Lpz.)13, 171, 1961.Google Scholar
  36. 36.
    Goebel A.: Untersuchungen über die Beeinflussung der Dynamik des arteriellen Windkessels durch CO2-Bäderkuren in Abhängigkeit von vegetativer Ausgangslage und Jahreszeit — Med. Inaug.-Diss., Marburg/Lahn, 1971.Google Scholar
  37. 37.
    Grossman Z., Asofsky R., DeLisi Ch.: The dynamics of antibody secreting cell production: regulation of growth and oscillations in the response to T-independent antigens — J. theor. Biol.84, 49, 1980.PubMedCrossRefGoogle Scholar
  38. 38.
    Günther R., Halberg F., Knapp E.: Circadiane Rhythmometrie mittels elektronischer Rechner zur Beurteilung von Kurwirkungen. In:Teichmann E. (Ed.): Kurverläufe und Kurverfolgsbeurteilung, Symposium II. Sanitas-Verlag, Bad Wörishofen, 1968; p. 106.Google Scholar
  39. 39.
    Günther R., Herold M., Halberg E., Halberg F.: Circadian placebo and ACTH effects on urinary cortisol in arthritics — Peptides1, 387, 1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Günther R., Knapp E., Halberg F.: Referenznormen der Rhythmometrie: Circadiane Acrophasen von zwanzig Körperfunktionen — Z. angew. Bäder. u. Klimaheilk.16, 123, 1969.Google Scholar
  41. 41.
    Günther R., Knapp E., Sothern R. B., Halberg F.: Standardization of living routine needs not synchronize adrenal cortical cycle gauged by urinary 17-hydroxycorticosteroid excretion (17-OHCS) in patients with osteoarthritis — Chronobiologia6, 106, 1979.Google Scholar
  42. 42.
    Halberg E., Halberg F., Cornélissen G., Garcia-Sainz M., Simpson H. W., Taggett-Anderson M. A., Haus E.: Toward a chronopsy: Part II. A thermopsy revealing asymmetrical circadian variation in surface temperature of human female breasts and literature review — Chronobiologia6, 231, 1979.PubMedGoogle Scholar
  43. 43.
    Halberg E., Halberg F., Vener K. J., Scheving L. E., Cornélissen G., De Prins J., Hrushesky W., Kennedy B. J.: Twenty-four hour synchronized chronotolerance of cis-diamminedichloroplatinum (II) by rats on 8-h and 12-h photofraction gauged by acrophase and paraphase of rectal temperature. In:Reinberg A., Halberg F. (Eds): Chronopharmacology — Advanc. Biosci.19, 377, 1979.Google Scholar
  44. 44.
    Halberg F.: Beobachtungen über 24 Stunden-Periodik in standardisierter Versuchsanordnung vor und nach Epinephrektomie und bilateraler optischer Enukleation. In: 20th Meeting of the German Physiologic Society. Homburg/Saar. September 1953 — Ber. ges. Physiol.162, 354, 1954.Google Scholar
  45. 45.
    Halberg F.: The 24-hour scale: a time dimension of adaptive functional organization — Perspect. Biol. Med.3, 491, 1960.PubMedGoogle Scholar
  46. 46.
    Halberg F., Carandente F., Cornélissen G., Katinas G. S.: Glossary of chronobiology — Chronobiologia4 (Suppl. 1), 1977; pp. 190. (Bilingual edition).Google Scholar
  47. 47.
    Halberg F., Cornélissen G., Sothern R. B., Wallach L. A., Halberg E., Ahlgren A., Kuzel M., Radke A., Barbosa J., Goetz F., Buckley J., Mandel J., Schuman L., Haus E., Lakatua D., Sackett L., Berg H., Kawasaki T., Ueno M., Uezono K., Matsuoka M., Omae T., Tarquini B., Cagnoni M., Garcia-Sainz M., Griffiths K., Wilson D., Wetterberg L., Donati L., Tatti P., Vasta M., Locatelli I., Camagna A., Lauro R., Tritsch G., Wendt H.: International geographical studies of oncological interest on chronobiological variables. In:Kaiser H. (Ed.): Neoplasms- Comparative pathology of abnormal growth in animals, plants and man. Williams and Wilkins Co., Baltimore, 1981; p. 553.Google Scholar
  48. 48.
    Halberg F., Delbarre F.: Summary:quo vadis chronobiologia?. In:Reinberg A., Halberg F. (Eds): Chronopharmacology — Advanc. Biosci.19, 403, 1979.Google Scholar
  49. 49.
    Halberg F., Engeli M., Hamburger C.: The 17-ketosteroid excretion of a healthy man on weekdays and weekends — Exp. Med. Surg.23, 61, 1965.PubMedGoogle Scholar
  50. 50.
    Halberg F., Engeli M., Hamburger C., Hillman D.: Spectral resolution of low-frequency, small-amplitude rhythms in excreted 17-ketosteroids; probable androgen-induced circaseptan desynchronization — Acta endocr. (Kbh.)50 (Suppl. 103), 5, 1965.Google Scholar
  51. 51.
    Halberg F., Günther R., Herold M., Halberg E.: Circadian and circaseptan (about-7-day) desynchronization of urinary cortisol by synthetic ACTH in arthritics. In: Proc. Endocr. Soc., 1981; p. 331. (Abstract 994).Google Scholar
  52. 52.
    Halberg F., Halberg E., Frelik M., Zgliczynski S., Gill J., Zbiegieni B., Zaleska-Freljan K., Herold M., Günther R.: Lessons from European chronobiology — Int. J. Chronobiol. (In press).Google Scholar
  53. 53.
    Halberg F., Hamburger C.: 17-ketosteroids and volume of human urine. Weekly and other changes with low frequency — Minn. Med.47, 916, 1964.PubMedGoogle Scholar
  54. 54.
    Halberg F., Levi F., Hrushesky W., Kennedy B. J.: Murine chronotolerance of cisdiamminedichloroplatinum (II); circadian rhythm and circannual influence. In: Proc. XIV Int. Conf. Int. Soc. Chronobiol. Hannover, July 8–12, 1979.Google Scholar
  55. 55.
    Halberg F., Powell E. W., Lubanovic W., Sothern R. B., Brockway B., Pasley J. N., Scheving L. E.: The chronopathology and experimental as well as clinical chronopharmacology of emotional disorders. In:Halberg F., Carandente F., Cornélissen G., Katinas G. S. (Eds): Glossary of chronobiology — Chronobiologia4 (Suppl. 1), 1977; pp. 190. (Bilingual edition).Google Scholar
  56. 56.
    Halberg F., Ratte J., Kühl J. F. W., Najarian J. S., Popovich V., Shiotsuka R., Chiba Y., Cutkomp L. K., Haus E.: Rythmes circaseptidiens — environ 7 jours — synchronisés ou non avec la semaine sociale — C.R. Acad. Sci. (Paris)278, 2675, 1974.Google Scholar
  57. 57.
    Halberg J., Halberg E., Hayes D. K., Smith R. D., Halberg F., Delea C. S., Danielson R. S., Bartter F. C.: Schedule shifts, life quality and quantity modeled by murine blood pressure elevation and arthropod lifespan — Int. J. Chronobiol.7, 17, 1980.Google Scholar
  58. 58.
    Haus E., Lakatua D. J., Halberg F., Halberg E., Cornélissen G., Sackett L. L., Berg H. G., Kawasaki T., Ueno M., Uezono K., Matsuoka M., Omae T.: Age effects upon circadian rhythm parameters in a concomitant study of 12 hormones in plasma of clinically healthy women. In: Proc. XIV Int. Conf. Int. Soc. Chronobiol. Hannover, July 8–12, 1979.Google Scholar
  59. 59.
    Haus E., Sackett L. L., Haus M. Sr.: Cardiovascular and temperature adaptation to phase-shift by intercontinental flight — longitudinal observations. In:Rabb W. K., Bixby E. K. (Eds): Proc. 5th Int. Symp. on Night- and Shift-Work, Rouen, France, 1980; p. VII-4.Google Scholar
  60. 60.
    Hayes D. K., Halberg F.: Shifts in lighting regimen in the face fly suggest circadian-circaseptan interactions — Proc. Minn. Acad. Sci., 1980; p. 4.Google Scholar
  61. 61.
    Hayes D. K., Halberg F., Teslow T.: Replicated frequency of lighting regimen shifts and aging in the face fly reveals circadian-circaseptan interaction — Physiologist23, 146, 1980. (Abstract 768).Google Scholar
  62. 62.
    Henry J.: Patent Office Reports, 490, 1858.Google Scholar
  63. 63.
    Hildebrandt G.: Reaktive Perioden und Spontanrhythmik. In: Atti VII Conf. Int. Società Studio Ritmi Biologici. Panminerva Medica, Siena, 1960; p. 75.Google Scholar
  64. 64.
    Hildebrandt G.: Physiologische Gesichtspunkte zur Rehabilitation — Z. phys. Med.1, 373, 1970.Google Scholar
  65. 65.
    Hildebrandt G.: Therapeutische Zeitordnung und Kurerfolg — Z. angew. Bäder- u. Klimaheilk.19, 219, 1972.Google Scholar
  66. 66.
    Hildebrandt G., Nunhöfer Chr.: Zur Frage der reaktiven Periodik des erythropoetischen Systems. Untersuchungen in 1.200 m Höhe und nach Aderlass — Z. phys. Med. Ergänzungsband (Suppl.), 186, 1977.Google Scholar
  67. 67.
    Hopkins H. A., Ritenour R. E., MacLeod M., Looney W. B.: The effect of varying the time between irradiation and cyclophosphamide on growth response of hepatoma 3924A — Int. J. Radiat. Oncol. Biol. Phys.5, 1455, 1979.PubMedGoogle Scholar
  68. 68.
    Hübner K.: Kompensatorische Hypertrophie, Wachstum und Regeneration der Rattenniere — Ergebn. allg. Path. path. Anat.100, 1, 1967.Google Scholar
  69. 69.
    Janeway E. G., Mosenthal H. O.: An unusual paroxysmal syndrome, probably allied to recurrent vomiting, with a study of the nitrogen metabolism — Trans. Ass. Amer. Phycns23, 504, 1908.Google Scholar
  70. 70.
    Kawahara K., Levi F., Halberg F., Rynasiewicz J., Sutherland D.: Circaseptan periodicity in rat allograft rejection. In: Proc. XIV Int. Conf. Int. Soc. Chronobiol. Hannover, July 8–12, 1979.Google Scholar
  71. 71.
    Keating G. M., Taylor F. W., Nicholson J. Y., Hinson E. W.: Short-term cyclic variations and diurnal variations of the Venus upper atmosphere — Science205, 62, 1979.PubMedCrossRefGoogle Scholar
  72. 72.
    Knapp M. S., Blamey R. W., Cove-Smith J. R., Dugdale R., Mackenzie N., Kowanko I., Pownall R.: A circadian rhythm in the time of human renal allograft rejection and an evaluation of the timing of prednisolone administration in British transplant units. In:Reinberg A., Halberg F. (Eds): Chronopharmacology — Advanc. Biosci.19, 57, 1979.Google Scholar
  73. 73.
    Kreis H., Lacombe M., Noel L. H., Descamps J. M., Chailley J., Crosnier J.: Kidney-graft rejection: has the need for steroids to be re-evaluated? — Lancetii, 1169, 1978.CrossRefGoogle Scholar
  74. 74.
    Lee J. B., Nelson D. H., Thorn G. W.: The cyclical pattern of renal excretion during the adaptation of normal subjects to desoxycorticosterone-induced sodium retention — J. clin. Endocr.21, 1426, 1961.PubMedGoogle Scholar
  75. 75.
    Lemberger L., Crabtree R. E.: Pharmacologic effects in man of a potent, long-acting dopamine receptor agonist — Science205, 1151, 1979.PubMedCrossRefGoogle Scholar
  76. 76.
    Levi F., Cornélissen G., Nelson W., Halberg F.: Cisplatine murine chrononephrotoxicity gauged by two marker rhythms — urine volume and telemetered intraperitoneal temperature. In:Walker C. A., Winget C. M., Soliman K. F. A. (Eds): Chronopharmacology and Chronotherapeutics. Florida A & M University Foundation, Tallahassee, Florida, 1981; pp. 363–377.Google Scholar
  77. 77.
    Levi F., Halberg F., Nesbit M., Haus E., Levine H.: Chrono-oncology. In:Kaiser H. (Ed.): Neoplasms — Comparative pathology of growth in animals, plants and man. Williams and Wilkins Co., Baltimore, 1981; p. 267.Google Scholar
  78. 78.
    Levi F., Pleasants M., Hrushesky W., Borch R. F., Halberg F., Kennedy B. J.: Urinary chronopharmacokinetics of cisdiamminedichloroplatinum (II) in the rat. In: Proc. XIV Int. Conf. Int. Soc. Chronobiol. Hannover, July 8–12, 1979.Google Scholar
  79. 79.
    Many A., Schwartz R. S.: Periodicity during recovery of immune response after cyclophosphamide treatment — Blood37, 692, 1971.PubMedGoogle Scholar
  80. 80.
    Moore J., Rawley R., Hopkins H. A., Ritenour R. E., Looney W. B.: Cyclophosphamide as an adjuvant to X-rays in treatment of a radio-resistant solid tumor of the rat, hepatoma H-4-11-E — Int. J. Radiat. Oncol. Biol. Phys.5, 1471, 1979.PubMedGoogle Scholar
  81. 81.
    Morley A., Stohlman F. Jr.: Brief report: periodicity during recovery of erythropoiesis following irradiation — Blood34, 96, 1969.PubMedGoogle Scholar
  82. 82.
    Morley A., Stohlman F. Jr.: Cyclophosphamide-induced cyclical neutropenia, an animal model of a human periodic disease — New Engl. J. Med.282, 643, 1970.PubMedGoogle Scholar
  83. 83.
    Nielsen K. H., White R. G.: Effect of host decomplementation on homeostasis of antibody production in fowl — Nature (Lond.)250, 234, 1974.CrossRefGoogle Scholar
  84. 84.
    Otto W., Hempel W. E.: Gibt es eine Rangordnung meteorologischer Einflussgrössen auf die Herzinfarkt-sterblichkeit? — Deutsch-Sowjetisches Symp. Chronobiologie und Chronomedizin, 1978, p. 46.Google Scholar
  85. 85.
    Petersen W. F.: Man, weather and sun — C. C. Thomas Co., Springfield, Illinois, 1947; p. 463.Google Scholar
  86. 86.
    Powell E. W., Pasley J. N., Scheving L. E., Halberg F.: Amplitude-reduction and acrophase-advance in mitotic rhythm in corneal epithelium of mice with bilaterally lesioned suprachiasmatic nuclei — Anat. Rec.197, 277, 1980.PubMedCrossRefGoogle Scholar
  87. 87.
    Rabkin S. W., Mathewson F. A., Tate R. B.: Chronobiology of cardiac sudden death in man — J. Amer. med. Ass.244, 1357, 1980.CrossRefGoogle Scholar
  88. 88.
    Raine C. S., Traugott V., Stone S. H.: Suppression of chronic allergic encephalomyelitis: relevance to multiple sclerosis — Science201, 445, 1978.PubMedCrossRefGoogle Scholar
  89. 89.
    Ratte J., Halberg F., Kühl J. F. W., Najarian J. S.: Circadian variation in the rejection of rat kidney allografts — Surgery73, 102, 1973.PubMedGoogle Scholar
  90. 90.
    Ratte J., Halberg F., Kühl J. F. W., Najarian J. S.: Circadian and circaseptan variations in rat kidney allography rejection. In:McGovern J., Reinberg A., Smolensky M. (Eds): Chronobiology in allergy and immunology. C. C. Thomas, Springfield, Illinois, 1977; p. 250.Google Scholar
  91. 91.
    Reimann H.: Periodic diseases — Medicine (Baltimore)30, 219, 1951.Google Scholar
  92. 92.
    Reimann H.: Periodic diseases — F. A. Davis, Philadelphia, 1968.Google Scholar
  93. 93.
    Reimann H.: Periodic (Pel-Ebstein) fever of lymphomas — Ann. clin. Lab. Med.7, 1, 1977.Google Scholar
  94. 94.
    Reimann H., Angelides A.: Periodic arthralgia in 23 members of five generations of a family — J. Amer. med. Ass.146, 713, 1951.Google Scholar
  95. 95.
    Richter C. P.: Cyclic manifestations in the sleep curves of psychotic patients — Arch. Neurol. Psychiat. (Chic.)31, 149, 1934.Google Scholar
  96. 96.
    Richter C. P.: Hormones and rhythms in man and animals — Recent Progr. Hormone Res.13, 105, 1957.PubMedGoogle Scholar
  97. 97.
    Richter C. P.: Biological clocks — in medicine and psychiatry: shock-phase hypothesis — Proc. nat. Acad. Sci. (Wash.)46, 1506, 1960.CrossRefGoogle Scholar
  98. 98.
    Roger J. H.: A significance test for cyclic trends in incidence data — Biometrika64, 152, 1977.CrossRefGoogle Scholar
  99. 99.
    Romball C. G., Weigle W. O.: A cyclical appearance of antibody-producing cells after a single injection of serum protein antigen — J. exp. Med.138, 1426, 1973.PubMedCrossRefGoogle Scholar
  100. 100.
    Sargent F.: Weekly and seasonal trends of upper respiratory infections in a group of 2,000 students — Amer. J. publ. Hlth30, 533, 1940.CrossRefGoogle Scholar
  101. 101.
    Scheving L. E., Halberg F., Pauly J. E., Baker M. L., Tsai T. H.: Circadian and about-weekly (circaseptan) interactions characterize murine tolerance to whole-body x-irradiation — Proc. AACR/ASCO22, 63, 1981.Google Scholar
  102. 102.
    Schmid A. von, Sauter R., Reubi F.: Der Zusammenhang zwischen Blutdruckperiodik und Nierendurchblutung — Schweiz. med. Wschr.28, 760, 1954.Google Scholar
  103. 103.
    Sothern R. B., Halberg F., Nelson W.: Strain difference in circadian murine chronotolerance to the antidepressant drug nomifensine — Chronobiologia6, 397, 1979.PubMedGoogle Scholar
  104. 104.
    Sothern R. B., Simpson H. W., Leach C., Nelson W. L., Halberg F.: Individually assessable human circadian, circaseptan and circannual urinary rhythms (with temporal conpacting and editing procedures). In:Halberg F., Scheving L. E., Powell E. W., Hayes D. K. (Eds): Proc. XIII Int. Conf. Int. Soc. Chronobiol. Publishing House Il Ponte, Milano, 1981; pp. 363–371.Google Scholar
  105. 105.
    Stimpfling J. H., Richardson A.: Periodic variations of the hemagglutinin response in mice following immunization against sheep red blood cells and alloantigens — Transplantation5, 1496, 1967.CrossRefGoogle Scholar
  106. 106.
    Tarquini B., Gheri R., Romano S., Costa A., Cagnoni M., Lee J.-K., Halberg F.: Circadian mesor-hyperprolactinemia in fibrocystic mastopathy — Amer. J. Med.66, 229, 1979.PubMedCrossRefGoogle Scholar
  107. 107.
    Teslow T. N., Stebbings J., Cornélissen G., Halberg F.: Asthma attack panel data as sentinels of environmental protection resolved by chronobiologic computer methods — Proc. Minn. Acad. Sci. 1978; p. 20.Google Scholar
  108. 108.
    Thalhammer O. von, Janicek L.: Die unspezifische Therapie (chorea minor) im Lichte einer neuen vegetativ-regulatorischen Leukozytenreaktion — Wien. klin. Wschr.63, 198, 1951.PubMedGoogle Scholar
  109. 109.
    Vaage J.: A time factor in the success or failure of immune rejection of transplanted tumors — Cancer Res.37, 1064, 1977.PubMedGoogle Scholar
  110. 110.
    Vollrath L., Kantazjian A., Howe C.: Mammalian pineal gland: 7-day rhythmic activity — Experientia (Basel)31, 458, 1975.Google Scholar
  111. 111.
    Weigle W. O.: Cyclical production of antibody as a regulatory mechanism in the immune response — Advanc. Immunol.21, 87, 1975.Google Scholar
  112. 112.
    Wever R.: The circadian system of man. Results of experiments under temporal isolation — Springer-Verlag, Berlin, 1979; p. 250.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Francis Levi
    • 2
  • Franz Halberg
    • 1
  1. 1.Chronobiology Laboratories 5-187 Lyon Laboratories Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Section of Medical Oncology, Department of MedicineUniversity of MinnesotaMinneapolis

Personalised recommendations