Folia Microbiologica

, Volume 45, Issue 3, pp 211–216 | Cite as

Detoxication of the herbicide diuron byPseudomonas sp.

  • B. A. El-Deeb
  • S. M. Soltan
  • A. M. Ali
  • K. A. Ali


A strain of bacteria able to detoxicate the herbicide diuron in pure culture was isolated from sites contaminated with different urea herbicides. Diuron was used as a sole source of carbon and energy by this isolate which is a Gram-negative, aerobic, rod-shaped bacterium with a single polar flagellum, and grows at 40°C. The strain has been identified asPseudomonas sp.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alva A.K., Singh M.: Sorption of bromacil, diuron, norflurazon, and simazin at various horizons in two soils.Bull. Environ. Contam. Toxicol.45, 365–374 (1990).PubMedCrossRefGoogle Scholar
  2. Behki R., Topp E., Dick W., Germon P.: Metabolism of the herbicide atrazine byRhodococcus strains.Appl. Environ. Microbiol.59, 1955–1959 (1993).PubMedGoogle Scholar
  3. Čerňáková M.: Biological degradation of isoproturon, chlortoluron and fenitrothion.Folia Microbiol.40, 201–206 (1995).CrossRefGoogle Scholar
  4. Čerňáková M., Ondrovičová M.: Short-run tests for determining harmful effects of PCB-containing engine oils on cells.Folia Microbiol.43, 417–420 (1998).CrossRefGoogle Scholar
  5. Čerňáková M., Zemanovićová A.: Microbial activity of soil contaminated with chlorinated phenol derivativesFolia Microbiol.43, 411–416 (1998).CrossRefGoogle Scholar
  6. Ditzelmüller G., Loidi M., Streichsbier F.: Isolation and characterization of a 2,4-dichlorophenoxyacetic acid-degrading soil bacterium.Appl. Microbiol. Biotechnol.31, 93–96 (1989).CrossRefGoogle Scholar
  7. El-Dib M.A., Aly O.A.: Persistence of some phenylamide pesticides in aquatic environment hydrolysis.Water Res.10, 1047–1050 (1976).CrossRefGoogle Scholar
  8. Engelhard G., Wallnofer P.R., Plapp K.: Identification ofN,O-dimethylhydroxylamine as a microbial degradation product of herbicide linuron.Appl. Microbiol.23, 664–668 (1972).Google Scholar
  9. Fu M.H., Alexander M.: Biodegradation of styrene in samples of natural environments.Environ. Sci. Technol.26, 1540–1544 (1992).CrossRefGoogle Scholar
  10. Geissbühler H.: The substituted urea, pp. 79–111 inDegradation of Herbicides (P.C. Kearny, D.D. Kaufman, Eds). Marcel Dekker, New York 1971.Google Scholar
  11. Gerhardt P.R., Murray E.G., Costilow N.R., Nester W.E., Wood A.W., Krieg R.N., Phillips B.G.:Manual of Method for General Bacteriology. American Society for Microbiology, Washington (DC) 1981.Google Scholar
  12. Haugland R.A., Schlemm D.J., Lyons IIIR.P., Sfera P.R., Chakrabarty A.M.: Degradation of the chlorinated phenoxyacetate herbicide 2,4-dichlorophenoxyacetic acid by pure and mixed bacterial cultures.Appl. Environ. Microbiol.56, 1357–1362 (1990).PubMedGoogle Scholar
  13. Hassal K.A.:The Biochemistry and Uses of Pesticides, 2nd ed., pp. 440–447. VCH Verlagsgessellschaft, Weinheim 1990.Google Scholar
  14. Kaate H.R., Roberts D.J., Stevens T.O., Crawford L.R., Crawford L.D.: Bioremediation of soils contaminated with herbi-cide 2-sec-butyl-4,6-dinitrophenol (dinoseb).Appl. Environ. Microbiol.58, 1683–1689 (1992).Google Scholar
  15. Kathleen H.B., Adeney A.J.: Residues of diuron and phytotoxic degradation products in aquatic situations. 1. Analytical methods for soil and water.Pestic. Sci.9, 342–353 (1978).CrossRefGoogle Scholar
  16. Kerr R.P., Capone D.G.: The effect of salinity on the microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments.Marine Environ. Res.26, 181–198 (1988).CrossRefGoogle Scholar
  17. King R.J., Short K.A., Seider R.J.: Assay for detection and enumeration of genetically engineered microorganisms which is based on the activity of a deregulated 2,4-dichlorophenoxyacetate monooxygenase.Appl. Environ. Microbiol.57, 1790–1792 (1991).PubMedGoogle Scholar
  18. Kozak J., Weber J.B.: Adsorption of five phenylurea herbicides by selected soils of Czechoslovakia.Weed Sci.31, 368–372 (1983).Google Scholar
  19. Lang E., Viedt H.: Degradation by and toxicity to bacteria of chlorinated phenols and benzenes, and hexachlorocyclohexane isomers.Microbiol. Ecol.28, 53–65 (1994).CrossRefGoogle Scholar
  20. Looa A.M.: Indicator medium for microorganisms degrading chlorinated pesticides.Microbiology21, 104–107 (1975).Google Scholar
  21. McBride E.K., Kenny W.J., Stalker M.D.: Metabolism of the herbicide bromoxynil byKlebsiella pneumoniae subsp.ozœnae.Appl. Environ. Microbiol.52, 325–330 (1986).PubMedGoogle Scholar
  22. Müller D., Gabriel J.: Bacterial degradation of the herbicide bromoxynil byAgrobacterium radiobacter in biofilm.Folia Microbiol.44, 377–379 (1999).CrossRefGoogle Scholar
  23. Oh K., Tuovines O.H.: Bacterial degradation of phenoxy herbicide mixtures 2,4-D and MCPP.Bull. Environ. Contam. Toxicol.47, 1–8 (1991).CrossRefGoogle Scholar
  24. Pieper D.H., Reinke W., Engesser K.H., Knacmuss H.J.: Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methyl-phenoxyacetic acid byAlcaligenes eutrophus JMP 134.Arch. Microbiol.150, 95–102 (1988).CrossRefGoogle Scholar
  25. Rickard R.W., Camper N.D.: Degradation of fluometuron byRhizoctonia solani.Pestic. Biochem. Physiol.9, 183–189 (1978).CrossRefGoogle Scholar
  26. Roberts J.S., Walker A., Waddington J.M., Welch J.S.: Isolation of a bacterial culture capable of degrading linuron, pp. 51–58 inPesticides in Soils and Water. Current Perspectives (A. Walker, Ed.); BCPC Monograph 47. British Crop Protection Council, Surrey 1991.Google Scholar
  27. Rojas-Avelizapa N.G., Rodríguez-Vázquez R., Martínez-Cruz J., Esparza-García F., Montes de Oca-García A., Ríos-Leal E., Fernández-Villagómez G.: Isolation and characterization of bacteria degrading polychlorinated biphenyls from transformer oil.Folia Microbiol.44, 317–321 (1999).CrossRefGoogle Scholar
  28. Shiaris M.P.: Seasonal biotransformation of naphthalene, phenanthrene and benzo(a)pyrene in surficial estuarine sediments.Appl. Environ. Microbiol.55, 1391–1399 (1989).PubMedGoogle Scholar
  29. Skryabin G.K., Golovleva L.A.:Application of Microorganisms in the Organic Synthesis. (In Russian) Nauka, Moscow 1976.Google Scholar
  30. Smith-Greneir L.L., Adkins A.: Degradation of diclofop-methyl by pure cultures of bacteria isolated from Manitoban soils.Can. J. Microbiol.42, 227–233 (1996).CrossRefGoogle Scholar
  31. Stanier R.Y., Palleroni J.N., Douderoff M.: The aerobic pseudomonads: a taxonomic study.J. Gen. Microbiol.43, 159–271 (1966).PubMedGoogle Scholar
  32. Tett V.A., Willetts J.A., Lappin-Scott M.H.: Enantioselective degradation of the herbicide mecoprop [2-(methyl-4-chlorophenoxy)propionic acid] by mixed and pure cultures.FEMS Microbiol. Ecol.14, 191–200 (1994).CrossRefGoogle Scholar
  33. Ward D.M., Brock T.D.: Hydrocarbon biodegradation in hypersaline environments.Appl. Environ. Microbiol.35, 353–359 (1978).PubMedGoogle Scholar
  34. Ware G.W.:Theory and Application, p. 321. W.H. Freeman & Co., San Francisco 1983.Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2000

Authors and Affiliations

  • B. A. El-Deeb
    • 1
  • S. M. Soltan
    • 1
  • A. M. Ali
    • 2
  • K. A. Ali
    • 1
  1. 1.Botany DepartmentFaculty of ScienceSohagEgypt
  2. 2.National Center of ResearchCairoEgypt

Personalised recommendations