Helgoländer Meeresuntersuchungen

, Volume 52, Issue 2, pp 115–139 | Cite as

On the cultivation of free-living marine and estuarine nematodes

  • T. Moens
  • M. Vincx


Although a large body of literature exists on the systematics and ecology of free-living marine and brackish-water nematodes, key questions on the nature and magnitude of interactions between nematodes and other organisms in the benthos remain unanswered. Relatively few authors have investigated live nematodes in food web studies or in experiments dealing with the nematodes’ response to a varying environment. It is mainly for the latter purpose that attempts have been made to maintain, rear and cultivate selected species. This paper describes the methodology used for the maintenance, rearing, and eventual permanent agnotobiotic cultivation of a variety of estuarine nematodes. Spot plates, where small samples of sediment or macrophyte material are inoculated on a sloppy agar layer, have been used for the purpose of maintenance and initial cultivation. Those species that reproduce on spot plates are then selected for monospecific cultivation on agar layers with different nutrient enrichments and with micro-organisms cotransferred from the spot plates as food. Mixtures of bacto and nutrient agar prepared in artificial seawater were specifically suitable for the xenic cultivation of nine bacterivorous and, when supplied with Erdschreiber nutrients, two algivorous/bacterivorous nematode species. Up to three generations of five other nematode species have been reared under laboratory conditions, and several more were kept alive and active for variable periods of time on agar. Generation times observed on spot plates forAdoncholaimus fuscus andOncholaimus oxyuris were substantially shorter than previously published estimates and suggest a correspondingly higher predatory and scavenging potency for these and related enoplids. A procedure for the long-term storage of nematodes at −80°C with glycerol as a cryoprotectant was successfully used forDiplolaimella dievengatensis, Panagrolaimus sp. 1, andPellioditis marina, but not forDiplolaimelloides meyli. The authors have also summarized the existing literature on the cultivation of marine and brackish-water nematodes. Continuous cultivation appears to have been successful mainly for Aufwuchs and epiphytic nematodes; only few sediment-dwellers have been established in permanent culture. Of only just over 30 species that have ever been cultivated, more than half belong to one family (Monhysteridae) and three are Rhabditida, an order poorly represented in the marine environment. Four species have been grown in monoxenic and one in axenic culture, the latter though with limited success. It is concluded that our understanding of the basic nutritional requirements of marine nematodes is as yet insufficient, and that the culture techniques which have so far mainly deployed agar or liquid substrates, while being suitable for the cultivation of Aufwuchs and epiphytic nematodes, do not accurately enough mimic gradients specific of the natural habitat of many sediment-dwellers.

Key words

nematodes marine estuarine Westerschelde Estuary cultivation agnotobiotic xenic axenic maintenance 

Literature Cited

  1. Alkemade, R., Wielemaker, A., De Jong, S. A. & Sandee, A. J. J., 1992. Experimental evidence for the role of bioturbation by the marine nematodeDiplolaimella dievengatensis in stimulating the mineralization ofSpartina anglica leaves.—Mar. Ecol. Prog. Ser.90, 149–155.CrossRefGoogle Scholar
  2. Aller, R. C. & Aller, J. Y., 1992. Meiofauna and solute transport in marine muds.—Limnol. Oceanogr.37, 1018–1033.Google Scholar
  3. Alongi, D. M. & Tietjen, J. H., 1980. Population growth and trophic interactions among free-living marine nematodes. In: Marine benthic dynamics. Ed. by K. R. Tenore & B. C. Coull. Univ. of South Carolina Press, Columbia, 151–166.Google Scholar
  4. Ban, S. H., Burns, C., Castel, J., Chaudron, Y., Christou, E., Escribano, R., Umani, S. F., Gasparini, S., Ruiz, F. G., Hoffmeyer, M., Ianora, A., Kang, H. K., Laabir, M., Lacoste, A., Miralto, A., Ning, X. R., Poulet, S., Rodriguez, V., Runge, J., Shi, J. X., Starr, M., Uye, S. & Wang, Y. J., 1997. The paradox of diatom-copepod interactions.—Mar. Ecol. Prog. Ser.157, 287–293.CrossRefGoogle Scholar
  5. Bates, J. W., Hope, W. D. & Litvaitis, M. K., 1998. A revised phylogeny of the Adenophorea. —Am. Zool.37, 52A.Google Scholar
  6. Bell, S. S. & Coull, B. C., 1978. Field evidence that shrimp predation regulates meiofauna.—Oecologia35, 141–148CrossRefGoogle Scholar
  7. Bergholz, E. & Brenning, U., 1978. Studies on the reproductive cycles of marine nematodes (Rhabditis marina andProchromadora orleji).—Wiss. Z. Univ. Rostock27, 393–398.Google Scholar
  8. Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., Frisse, L. M., Vida, J. T. & Thomas, W. K., 1998. A molecular evolutionary framework for the phylum Nematoda.—Nature, Lond.392, 71–75.CrossRefGoogle Scholar
  9. Bolla, R., 1979. Developmental nutrition of nematodes: the biochemical role of sterols, heme compounds and lysosomal enzymes.—J. Nematol.11, 250–259.PubMedGoogle Scholar
  10. Bouwman, L. A., 1983. Systematics, ecology and feeding biology of estuarine nematodes.—Publs. Vers. Biologisch Onderzoek Eems-Dollard Estuarium (BOEDE)3, 1–173.Google Scholar
  11. Bouwman, L. A., Romeyn, K. & Admiraal, W., 1984a. On the ecology of meiofauna in an organically polluted estuarine mudflat.—Estuar. coast. Shelf Sci.19, 633–653.CrossRefGoogle Scholar
  12. Bouwman, L. A., Romeyn, K., Kremer, D. R. & van Es, F. B., 1984b. Occurrence and feeding biology of some nematode species in estuarine aufwuchs communities.—Cah. Biol. mar.25, 287–303.Google Scholar
  13. Chitwood, B. G. & Murphy, D. G., 1964. Observations on two marine monhysterids—their classification, cultivation and behavior.—Trans. Am. microsc. Soc.83, 311–329.CrossRefGoogle Scholar
  14. Chitwood, B. G. & Timm, R. W., 1954. Free-living nematodes of the Gulf of Mexico. In: Gulf of Mexico, its origin, waters, and marine life.—Fish. Bull. U.S.89, 313–323.Google Scholar
  15. Coull, B. C., 1990. Are members of the meiofauna food for higher trophic levels?.—Trans. Am. microsc. Soc.109, 233–246.CrossRefGoogle Scholar
  16. Deutsch, A., 1978. Gut structure and digestive physiology of two marine nematodes,Chromadorina germanica (Bütschli, 1874) andDiplolaimella sp.—Biol. Bull. mar. biol. Lab., Woods Hole155, 317–335.CrossRefGoogle Scholar
  17. Dietrich, G. & Kalle, K. 1957. Allgemeine Meereskunde. Borntraeger, Berlin, 492 pp.Google Scholar
  18. Dougherty, E. C., 1959. Introduction to axenic culture of invertebrate metazoa: A goal.—Ann. N.Y. Acad. Sci.27, 27–54.CrossRefGoogle Scholar
  19. Dougherty, E. C., 1960. Cultivation of aschelminths, especially rhabditid nematodes. In: Nematology —fundamentals and recent advances with emphasis on plant-parasitic and soil forms. Ed. by J. N. Sasser & W. R. Jenkins. Univ. of North Carolina Press, Chapel Hill, N.C., 297–317.Google Scholar
  20. Findlay, S., 1982. Effect of detrital nutritional quality on population dynamics of a marine nematode (Diplolaimella chitwoodi).—Mar. Biol.68, 223–227.CrossRefGoogle Scholar
  21. Findlay, S. & Tenore, K. R., 1982. Effect of a free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization.—Mar. Ecol. Prog. Ser.8, 161–166.CrossRefGoogle Scholar
  22. Gee, J. M., 1989. An ecological and economic review of meiofauna as food for fish.—Zool. J. Linn. Soc.96, 243–261.Google Scholar
  23. Gerlach, S. A. & Schrage, M., 1969. Freilebende Nematoden als Nahrung der SandgarneleCrangon crangon. Experimentelle Untersuchungen über die Bedeutung der Meiofauna als Nahrung für das marine Makrobenthos.—Oecologia,2, 362–375.CrossRefGoogle Scholar
  24. Gerlach, S. A. & Schrage, M., 1971. Life cycles in marine meiobenthos. Experiments at various temperatures withMonhystera disjuncta andTheristus pertenuis (Nematoda).—Mar. Biol.9, 274–280.CrossRefGoogle Scholar
  25. Gerlach, S. A. & Schrage, M., 1972. Life cycles at low temperatures in some freeliving marine nematodes. —Veröff. Inst. Meeresforsch. Bremerh.14, 5–11.Google Scholar
  26. Hamerlynck, O. & Vanreusel, A., 1993.Mesacanthion diplechma (Nematoda: Thoracostomopsidae), a link to higher trophic levels?.—J. mar. biol. Ass. U.K.73, 453–456.Google Scholar
  27. Heip, C., Smol, N. & Absillis, V., 1978. Influence of temperature on the reproductive potential ofOncholaimus oxyuris (Nematoda, Oncholaimidae).—Mar. Biol.45, 255–260.CrossRefGoogle Scholar
  28. Heip, C., Vincx, M. & Vranken, G., 1985. The ecology of marine nematodes.—Oceanogr. mar. Biol.23, 399–489.Google Scholar
  29. Hieb, W. F. & Rothstein, M., 1968. Sterol requirement of a free-living nematode.—Science, N.Y.160, 778–779.Google Scholar
  30. Hopper, B. E., Fell, J. W. & Cefalu, R. C., 1973. Effect of temperature on life cycles of nematodes associated with the mangrove (Rhizophora mangle) detrital system.—Mar. Biol.23, 293–296.CrossRefGoogle Scholar
  31. Hopper, B. E. & Meyers, S. P., 1966. Aspects of the life cycle of marine nematodes.—Helgoländer wiss. Meeresunters.13, 444–449.CrossRefGoogle Scholar
  32. Jensen, P., 1982. Diatom-feeding behaviour of the free-living marine nematodeChromadorita tenuis. —Nematologica28, 71–76.Google Scholar
  33. Jensen, P., 1983. Life history of the free-living marine nematodeChromadorita tenuis (Nematoda: Chromadorida).—Nematologica29, 335–345.Google Scholar
  34. Jensen, P., 1987. Feeding ecology of free-living aquatic nematodes.—Mar. Ecol. Prog. Ser.35, 187–196.CrossRefGoogle Scholar
  35. Jensen, P., 1996. Burrows of marine nematodes as centres for microbial growth.—Nematologica42, 320–329.CrossRefGoogle Scholar
  36. Kinne, O., 1977. Cultivation of animals: research cultivation, (7) Nematoda. In: Marine ecology. Ed. by O. Kinne. Wiley, Chichester,3 (2), 691–709.Google Scholar
  37. Ko, M. P., Schmitt, D. P. & Sipes, B. P., 1996. Exenizing and culturing endomigratory plant-parasitic nematodes using pluronic F127, including its effects on population dynamics ofPratylenchus penetrans.—J. Nematol.28, 115–123.PubMedGoogle Scholar
  38. Koenning, S. R. & Barker, K. R., 1985. Gnotobiotic techniques for plant-parasitic nematodes. In An advanced treatise on Meloidogyne. Ed. by K. R. Barker, C. C. Carter & J. N. Sasser. North Carolina State Univ. Graphics, North Carolina,2, 49–66.Google Scholar
  39. Lee, J. J., McEnergy, M., Pierce, S., Freudenthal, H. H. & Muller, W. A., 1966. Tracer experiments in feeding littoral foraminifera.—J. Protozool.13, 659–670.Google Scholar
  40. Lee, J. J. & Muller, W. A., 1975. Culture of salt marsh microorganisms and micrometazoa. In: Culture of marine invertebrate animals. Ed. by W. L. Smith & M. H. Chanley. Plenum Press, New York, 87–109.Google Scholar
  41. Lee, J. J., Tietjen, J. H., Stone, R. J., Muller, W. A., Rullman, J. & McEnergy, M., 1970. The cultivation and physiological ecology of members of salt marsh epiphytic communities.—Helgoländer wiss. Meeresunters.20, 136–156.CrossRefGoogle Scholar
  42. Lewis, J. A. & Fleming, J. T., 1995. Basic culture methods.—Meth. Cell Biol.48, 3–29.Google Scholar
  43. Li, J., 1993. The temporal variability of free-living nematodes in a brackish tidal flat of the Westerschelde with emphasis on the use of an ecological model. PhD. Thesis, State Univ. of Gent, 81+210 pp.Google Scholar
  44. Li, J. & Vincx, M., 1993. The temporal variation of intertidal nematodes in the Westerschelde. I. The importance of an estuarine gradient.—Neth. J. aquat. Ecol.,27, 319–326.CrossRefGoogle Scholar
  45. Li, J., Vincx, M., Herman, P. M. J., 1997. Carbon flows through meiobenthic nematodes in the Westerschelde Estuary.—Fundam. appl. Nematol.,20, 487–494.Google Scholar
  46. Malakhov, V. V., 1974. Life-cycle of the free-living nematodePontonema vulgare in the White Sea. —Vest. mosk. Univ. (Ser. 4)1, 10–14.Google Scholar
  47. Meyers, S. P., Feder, W. A. & Tsue, K. M., 1963. Nutritional relationships among certain filamentous fungi and a marine nematode.—Science, N.Y.141, 520–522.Google Scholar
  48. Meyers, S. P., Feder, W. A. & Tsue, K. M., 1964. Studies of relationships among nematodes and filamentous fungi in the marine environment.—Devs. ind. Microbiol.5, 354–364.Google Scholar
  49. Meyers, S. P. & Hopper, B. E., 1966. Attraction of the marine nematode,Metoncholaimus sp., to fungal substrates.—Bull. mar. Sci.16, 142–150.Google Scholar
  50. Meyers, S. P. & Hopper, B. E., 1967. Studies on marine fungal-nematode associations and plant degradation.—Helgoländer wiss. Meeresunters.15, 270–281.CrossRefGoogle Scholar
  51. Moens, T., Vierstraete, A., Vanhove, S., Verbeke, M. & Vincx, M., 1996a. A handy method for measuring meiobenthic respiration.—J. exp. mar. Biol. Ecol.197, 177–190.CrossRefGoogle Scholar
  52. Moens, T., Vierstraete, A. & Vincx, M., 1996b. Life strategies in two bacterivorous marine nematodes: Preliminary results.—Mar. Ecol.17, 509–518.CrossRefGoogle Scholar
  53. Moens, T. & Vincx, M., 1997. Observations on the feeding ecology of estuarine nematodes.—J. mar. biol. Ass. U.K.77, 211–227.CrossRefGoogle Scholar
  54. Montagna, P. A., 1995. Rates of metazoan meiofaunal microbivory: a review.—Vie Milieu45, 1–9.Google Scholar
  55. Nehring, S., 1991. Der Röhrenbau: Eine neuentdeckte, erfolgreiche Lebensweise bei den Nematoden. —Mikrokosmos80, 134–138.Google Scholar
  56. Nehring, S., Jensen, P. & Lorenzen, S., 1990. Tube-dwelling nematodes: tube construction and possible ecological effects on sediment-water interfaces.—Mar. Ecol. Prog. Ser.64, 123–128.CrossRefGoogle Scholar
  57. Pringault, O., De Wit, R. & Caumette, P., 1996. A benthic gradient chamber for culturing phototrophic sulfur bacteria on reconstituted sediments.—FEMS Microbiol. Ecol.20, 237–250.CrossRefGoogle Scholar
  58. Riemann, F. & Schrage, M., 1978. The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture.—Oecologia34, 75–88.CrossRefGoogle Scholar
  59. Romeyn, K., Bouwman, L. A. & Admiraal, W., 1983. Ecology and cultivation of the herbivorous brackish-water nematodeEudiplogaster paramatus.—Mar. Ecol. Prog. Ser.12, 145–153.CrossRefGoogle Scholar
  60. Service, S. K., Feller, R. J., Coull, B. C. & Woods, R., 1992. Predation effect of three fish species and a shrimp on macrobenthos and meiobenthos in microcosms.—Estuar. coast. Shelf Sci.34, 277–293.CrossRefGoogle Scholar
  61. Skoolmun, P. & Gerlach, S. A., 1971. Jahreszeitliche Fluktuationen der Nematodenfauna im Gezeitenbereich des Weser-Ästuars (Deutsche Bucht).—Veröff. Inst. Meeresforsch. Bremerh.13, 119–138.Google Scholar
  62. Sudhaus, W., 1974. Nematoden (insbesondere Rhabditiden) des Strandanwurfs und ihre Beziehungen zu Krebsen.—Faun.-ökol. Mitt.4, 365–400.Google Scholar
  63. Tietjen, J. J., 1967. Observations on the ecology of the marine nematodeMonhystera filicaudata Allgén, 1929.—Trans. Am. microsc. Soc.86, 304–306.CrossRefGoogle Scholar
  64. Tietjen, J. H. & Lee, J. J., 1972. Life cycles of marine nematodes. Influence of temperature and salinity on the development ofMonhystera denticulata Timm.—Oecologia10, 167–176.CrossRefGoogle Scholar
  65. Tietjen, J. H. & Lee, J. J., 1973. Life-history and feeding habits of the marine nematodeChromadora macrolaimoides Steiner.—Oecologia12, 303–314.CrossRefGoogle Scholar
  66. Tietjen, J. H. & Lee, J. J., 1975. Axenic culture and uptake of dissolved organic substances by the marine nematodeRhabditis marina Bastian.—Cah. Biol. mar.16, 685–693.Google Scholar
  67. Tietjen, J. H. & Lee, J. J., 1977. Life history of marine nematodes. Influence of temperature and salinity on the reproductive potential ofChromadorina germanica Bütschli.—Mikrofauna Meeresboden15, 263–270.Google Scholar
  68. Tietjen, J. H., Lee, J. J., Rullman, J., Greengart, A. & Trompeter, J., 1970. Gnotobiotic culture and physiological ecology of the marine nematodeRhabditis marina Bastian.—Limnol. Oceanogr.15, 535–543.CrossRefGoogle Scholar
  69. Trotter, D. B. & Webster, J. M., 1984. Feeding preferences and seasonality of free-living marine, nematodes inhabiting the kelpMacrocystis integrifolia.—Mar. Ecol. Prog. Ser.14, 151–157.CrossRefGoogle Scholar
  70. Ukeles, R., 1976. Cultivation of plants. Unicellular plants. In: Marine ecology. Ed. by O. Kinne. Wiley, London,3(1), 367–466.Google Scholar
  71. Vancoppenolle, B., Borgonie, G. & Coomans, A., 1998. Generation times of some freeliving nematodes cultured at three temperatures.—Fundam. appl. Nematol. (In press)Google Scholar
  72. Vanfleteren, J. R., 1978. Axenic culture of free-living, plant parasitic and insect parasitic nematodes. —A. Rev. Phytopath.16, 131–157.CrossRefGoogle Scholar
  73. Vanfleteren, J. R., 1980. Nematodes as nutritional models. In: Nematodes as biological models. Ed. by B. M. Zuckerman. Acad. Press, New York,2, 47–80.Google Scholar
  74. Viglierchio, D. R. & Johnson, R. N., 1971. On the maintenance ofDeontostoma californicum.—J. Nematol.3, 86–88.PubMedGoogle Scholar
  75. von Thun, W., 1966. Eine Methode zur Kultivierung der Mikrofauna.—Veröff. Inst. Meeresforsch. Bremerh.2, 277–280.Google Scholar
  76. von Thun, W., 1968. Autökologische Untersuchungen an freilebenden Nematoden des Brackwassers. Diss. Christian-Albrechts-Univ., Kiel, 72 pp.Google Scholar
  77. Vranken, G., 1985. Een autoecologische studie van brakwaternematoden. Ph.D.-thesis, State Univ. of Gent, 282+202pp.Google Scholar
  78. Vranken, G. & Heip, C., 1983. Calculation of the intrinsic rate of natural increase, rm, withRhabditis marina Bastian 1865 (Nematoda).—Nematologica29, 468–477.Google Scholar
  79. Vranken, G., Thielemans, L., Heip, C. & Vandycke, M., 1981. Aspects of the life-cycle ofMonhystera parelegantula (Nematoda, Monhysteridae).—Mar. Ecol. Prog. Ser.6, 67–72.CrossRefGoogle Scholar
  80. Vranken, G., Van Brussel, D., Vanderhaeghen, R. & Heip, C., 1984. Research on the development of a standardized ecotoxicological test on marine nematodes. I. Culturing conditions and criteria for two Monhysterids,Monhystera disjuncta andMonhystera microphthalma. In: Ecotoxicological testing for the marine environment. Ed. by G. Persoone, E. Jaspers & C. Claus. State Univ. of Gent and Inst. mar. scient. Res., Bredene,2, 159–184.Google Scholar
  81. Vranken, G., Vanderhaeghen, R. & Heip, C., 1985. Toxicity of cadmium to free-living marine and brackish-water nematodes (Monhystera microphthalma, Monhystera disjuncta, Pellioditis marina).— Dis. aquat. Org.1, 49–58.CrossRefGoogle Scholar
  82. Warwick, R. M., 1981a. Survival strategies of meiofauna. In: Feeding and survival strategies of estuarine organisms. Ed. by N. V. Jones & W. J. Wolff. Plenum Press, New York, 39–52.Google Scholar
  83. Warwick, R. M., 1981b. The influence of temperature and salinity on energy partitioning in the marine nematodeDiplolaimelloides bruciei.—Oecologia51, 318–325.CrossRefGoogle Scholar
  84. Wieser, W., 1953. Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden.—Ark. Zool.4, 439–484.Google Scholar
  85. Woombs, M. & J. Laybourn-Parry, 1984. Growth, reproduction and longevity in nematodes from sewage treatment plants.—Oecologia64, 168–172.CrossRefGoogle Scholar

Copyright information

© Biologische Anstalt Helgoland 1998

Authors and Affiliations

  • T. Moens
    • 1
  • M. Vincx
    • 1
  1. 1.Biology Department, Marine Biology SectionUniversity of GentGent, FlandersBelgium

Personalised recommendations