Advertisement

Fibers and Polymers

, Volume 8, Issue 1, pp 19–24 | Cite as

Effect of UV irradiation on cellulase degradation of cellulose acetate containing TiO2

  • Jinho Jang
  • Hae-Sung Lee
  • Won-Seok Lyoo
Article

Abstract

Cellulose acetate (CA) films containing anatase type titanium dioxide (TiO2) nanoparticles were prepared by solution casting. The film surface was modified by UV irradiation using a grid type UV irradiator. The UV irradiation caused slight increase in photodegradation of the CA films with TiO2 compared to the CA film alone. However, CA films irrespective of TiO2 content did not show a significant enzymatic degradation by a cellulase fromAspergillus niger without UV irradiation. Upon UV irradiation, the biodegradability remarkably improved even in the CA film without TiO2. The irradiation of CA films decreased both the water contact angle and the degree of substitution (DS) implying the decrease in acetyl groups of the CA film surface due to the photo-scission of the acetyl group and photooxidation, resulting in more facile biodegradation of the surface film layer. The substantial enhancement in biodegradation of the UV irradiated CA film containing TiO2 was attributed to the increased hydrophilicity, lowered DS and zeta potential due to the photoscission and the photooxidation effect of UV light. Also the increased surface area of the CA film due to the photocatalysis of TiO2 particles may encourage the facile biodegradation.

Keywords

Cellulose acetate Titanium dioxide UV Photodegradation Biodegradability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. Edgar, C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D. Seiler, M. C. Shelton, and D. Tindall,Prog. Polym. Sci.,26, 1605 (2001).CrossRefGoogle Scholar
  2. 2.
    P. Rustemeyer,Macromol. Symp.,208, 1 (2004).CrossRefGoogle Scholar
  3. 3.
    C. W. Kan, C. W. M. Yuen, and S. Q. Jiang,Fibers and Polymers,7, 241 (2006).CrossRefGoogle Scholar
  4. 4.
    E. T. Reese,Ind. Eng. Chem.,49, 89 (1957).CrossRefGoogle Scholar
  5. 5.
    C. M. Buchanan, R. M. Gardner, and R. J. Komarek,J. Appl. Polym. Sci.,47, 1709 (1993).CrossRefGoogle Scholar
  6. 6.
    R. J. Komarek, R. M. Gardner, C. M. Buchanan, and S. Gedon,J. Appl. Polym. Sci.,50, 1739 (1993).CrossRefGoogle Scholar
  7. 7.
    W. G. Glasser, B. K. McCartney, and G. Samaranayaka,Biotechnol. Prog.,10, 214 (1994).CrossRefGoogle Scholar
  8. 8.
    C. Atlaner, B. Saake, and J. Puls,Cellulose,10, 85 (2003).CrossRefGoogle Scholar
  9. 9.
    T. Ishigaki, W. Sugano, M. Ike, H. Taniguchi, T. Goto, and M. Fujita,Polym. Degrad. Stabil.,78, 505 (2002).CrossRefGoogle Scholar
  10. 10.
    T. A. Brodof and J. B. Hopkins, Jr.,U.S. Patent, 5491024 (1996).Google Scholar
  11. 11.
    M. Itoh, A. Miyazawa, T. Aoe, and O. Ikemoto,U.S. Patent, 5804296 (1998).Google Scholar
  12. 12.
    O. Carp, C. L. Huisman, and A. Reller,Prog. Solid. State. Chem.,32, 33 (2004).CrossRefGoogle Scholar
  13. 13.
    S. Karuppuchamy, J. M. Jeong, D. P. Amanerkar, and H. Minoura,Vacuum,80, 494 (2006).CrossRefGoogle Scholar
  14. 14.
    I. Matieson and R. H. Bradley,Int. J. Adhesion Adhesives,16, 29 (1996).CrossRefGoogle Scholar
  15. 15.
    J. Jang, S. Eom, and Y. Kim,J. Korean Fiber Soc.,39, 100 (2002).Google Scholar
  16. 16.
    J. Jang and D. Park,J. Korean Soc. Dyers Finishers,17, 7 (2005).Google Scholar
  17. 17.
    D. K. Owens and R. C. Wendt,J. Appl. Polym. Sci.,13, 1741 (1969).CrossRefGoogle Scholar
  18. 18.
    M. Quirynen, M. Marechal, H. J. Busscher, A. H. Weerkamp, J. Arends, P. L. Darius, and D. Steenberghe,J. Dent. Res.,68, 796 (1989).Google Scholar

Copyright information

© The Korean Fiber Society 2007

Authors and Affiliations

  1. 1.School of Advanced Materials and System EngineeringKumoh National Institute of TechnologyKumiKorea
  2. 2.School of TextilesYeungnam UniversityKyungsanKorea

Personalised recommendations