, Volume 27, Issue 4, pp 593–603 | Cite as

Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt)

  • Alberto Vieira Borges
  • Jean-Pierre Vanderborght
  • Laure-Sophie Schiettecatte
  • Frédéric Gazeau
  • Sarah Ferrón-Smith
  • Bruno Delille
  • Michel Frankignoulle


We report a large set of 295 interfacial carbon dioxide (CO2) flux measurements obtained in the Scheldt estuary in November 2002 and April 2003, using the floating chamber method. From concomitant measurements of the air-water CO2 gradient, we computed the gas transfer velocity of CO2. The gas transfer velocity is well correlated to wind speed and a simple linear regression function gives the most consistent fit to the data. Based on water current measurements, we estimated the contribution of water current induced turbulence to the gas transfer velocity, using the conceptual relationship of O'Connor and Dobbins (1958). This allowed us to construct an empirical relationship to compute the gas transfer velocity of CO2 that accounts for the contribution of wind and water current. Based on this relationship, the spatial and temporal variability of the gas transfer velocity in the Scheldt estuary was investigated. Water currents contribute significantly to the gas transfer velocity, but the spatial and temporal variability (from daily to seasonal scales) is mainly related to wind speed variability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abril, G., H. Etcheber, A. V. Borges, andM. Frankignoulle. 2000. Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary.Comptes Rendus de l'Académie des Sciences-Séries IIA—Earth and Planetary Science 330:761–768.CrossRefGoogle Scholar
  2. Belanger, T. V. andE. A. Korzum. 1991. Critique of floating-dome technique for estimating reaeration rates.Journal of Environmental Engineering 117:144–150.CrossRefGoogle Scholar
  3. Borges, A. V., B. Delille, L. S. Schiettecatte, F. Gazeau, G. Abril, and M. Frankignoulle. 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames).Limnology and Oceanography in press.Google Scholar
  4. Borges, A. V. andM. Frankignoulle. 2002. Distribution of surface carbon dioxide and air-sea exchange in the upwelling system off the Galician coast.Global Biogeochemical Cycles 16:1020.CrossRefGoogle Scholar
  5. Broecker, H. C. andW. Siems. 1984. The role of bubbles for gas transfer from water to air at higher wind speeds: experiments in wind-wave facility in Hamburg, p. 229–238.In W. Brutsaert and G. H. Jirka (eds.), Gas Transfer at Water Surfaces. Reidel, Dordrecht, The Netherlands.Google Scholar
  6. Carini, S., N. Weston, C. Hopkinson, J. Tucker, A. Giblin, andJ. Vallino. 1996. Gas exchange rates in the Parker River estuary, Massachusetts.Biological Bulletin 191:333–334.Google Scholar
  7. Cerco, C. F. 1989. Estimating estuarine reaeration rates.Journal of Environmental Engineering 115:1066–1070.Google Scholar
  8. Clark, J. F., P. Schlosser, H. J. Simpson, M. Stute, R. Wanninkhof, andD. T. Ho. 1995. Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique, p. 175–800.In B. Jähne and E. Monahan (eds.), Air-Water Gas Transfer. Aeon Verlag, Hanau.Google Scholar
  9. Clark, J. F., P. Schlosser, M. Stute, andH. J. Simpson. 1996. SF63He tracer release experiment: A new method of determining longitudinal dispersion coefficients in large rivers.Environmental Science and Technology 30:1527–1532.CrossRefGoogle Scholar
  10. Clark, J. F., H. J. Simpson, W. M. Smethie, andC. Toles. 1992. Gas-exchange in a contaminated estuary inferred from chlorofluorocarbons.Geophysical Research Letters 19:1133–1136.CrossRefGoogle Scholar
  11. Clark, J. F., R. Wanninkhof, P. Schlosser, andH. J. Simpson. 1994. Gas exchange rates in the tidal Hudson River using a dual tracer technique.Tellus 46B:274–285.Google Scholar
  12. Devol, A. H., P. D. Quay, J. E. Richey, andL. A. Martinelli. 1987. The role of gas-exchange in the inorganic carbon, oxygen and222Rn budgets of the Amazon.Limnology and Oceanography 32:235–248.Google Scholar
  13. Elsinger, R. J. andW. S. Moore. 1983. Gas exchange in the Pee Dee River based on222Rn evasion.Geophysical Research Letters 10:443–446.CrossRefGoogle Scholar
  14. Frankignoulle, M. 1988. Field measurements of air-sea CO2 exchange.Limnology and Oceanography 33:313–322.Google Scholar
  15. Frankignoulle, M., G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, andJ.-M. Théate. 1998. Carbon dioxide emission from European estuaries.Science 282:434–436.CrossRefGoogle Scholar
  16. Frankignoulle, M., I. Bourge, andR. Wollast. 1996b. Atmospheric CO2 fluxes in a highly polluted estuary (The Scheldt).Limnology and Oceanography 41:365–369.CrossRefGoogle Scholar
  17. Frankignoulle, M. andA. V. Borges. 2001. Direct and indirect pCO2 measurements in a wide range of pCO2 and salinity values (the Scheldt estuary).Aquatic Geochemistry 7:267–273.CrossRefGoogle Scholar
  18. Frankignoulle, M., A. V. Borges, andR. Biondo. 2001. A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments.Water Research 35:1344–1347.CrossRefGoogle Scholar
  19. Frankignoulle, M., J.-P. Gattuso, R. Biondo, I. Bourge, G. Copin-Montégut, andM. Pichon. 1996a. Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges.Marine Ecology Progress Series 145:123–132.CrossRefGoogle Scholar
  20. Hartman, B. andD. E. Hammond. 1984. Gas Exchanges rates across the sediment-water and air-water interfaces in south San Francisco Bay,Journal of Geophysical Research 89:3593–3603.CrossRefGoogle Scholar
  21. Hartman, B. andD. E. Hammond. 1985. Gas Exchange in San Francisco Bay.Hydrobiologia 129:59–68.CrossRefGoogle Scholar
  22. Jacobs, C. M. J., W. I. M. Kohsiek, andW. A. Oost. 1999. Airsea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE.Tellus B 51:629–641.CrossRefGoogle Scholar
  23. Kremer, J. N., A. Reischauer, andC. D'Avanzo. 2003a. Estuary-specific variation in the air-water gas exchange coefficient for oxygen.Estuaries 26:829–836.Google Scholar
  24. Kremer, J. N., S. W. Nixon, B. Buckley, andP. Roques. 2003b. Technical note: Conditions for using the floating chamber method to estimate air-water gas exchange.Estuaries 26:985–990.CrossRefGoogle Scholar
  25. Lefevre, N., A. J. Watson, D. J. Cooper, R. F. Weiss, T. Takahashi, andS. C. Sutherland. 1999. Assessing the seasonality of the oceanic sink for CO2 in the northern hemisphere.Global Biogeochemical Cycles 13:273–286.CrossRefGoogle Scholar
  26. Liss, P. S. andL. Merlivat. 1986. Air-sea exchange rates: Introduction and synthesis, p. 113–127.In P. Buat-Ménard (ed.), The Role of Air-Sea Exchanges in Geochemical Cycling. Reidel, Dordrecht, The Netherlands.Google Scholar
  27. Marino, R. andR. W. Howarth. 1993. Atmospheric oxygenexchange in the Hudson River—Dome measurements and comparison with other natural waters.Estuaries 16:433–445.CrossRefGoogle Scholar
  28. Matthews, C. J. D., V. L. St. Louis, andR. H. Hesslein. 2003. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces.Environmental Science and Technology 37:772–780.CrossRefGoogle Scholar
  29. McGillis, W. R., J. B. Edson, J. D. Ware, J. W. H. Dacey, J. E. Hare, C. W. Fairall, andR. Wanninkhof. 2001. Carbon dioxide flux techniques performed during GasEx-98.Marine Chemistry 75:267–280.CrossRefGoogle Scholar
  30. Nightingale, P. D., G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin, andR. Upstill-Goddard. 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers.Global Biogeochemical Cycles 14:373–387.CrossRefGoogle Scholar
  31. O'Connor, D. J. andW. E. Dobbins. 1958. Mechanism of reaeration in natural streams.Transactions of the American Society of Civil Engineering 123:641–684.Google Scholar
  32. Raymond, P. A. andJ. J. Cole. 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity.Estuaries 24:312–317.CrossRefGoogle Scholar
  33. Regnier, P., R. Wollast, andC. I. Steefel. 1997. Long term fluxes of reactive species in macrotidal estuaries: Estimates from a fully transient, multi-component reaction transport model.Marine Chemistry 58:127–145.CrossRefGoogle Scholar
  34. Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, andL. L. Hess. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2.Nature 416:617–620.CrossRefGoogle Scholar
  35. Smith, S. D. 1988. Coefficients for sea-surface wind stress, heat-flux, and wind profiles as a function of wind-speed and temperature.Journal of Geophysical Research 93:15467–15472.CrossRefGoogle Scholar
  36. Smith, S. V. andG. S. Key. 1975. Carbon dioxide and metabolism in marine environments.Limnology and Oceanography 20: 493–495.CrossRefGoogle Scholar
  37. Takahashi, T., S. C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R. A. Feely, C. Sabine, J. Olafsson, andY. Nojiri. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects.Deep-Sea Research II 49:1601–1622.CrossRefGoogle Scholar
  38. Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean.Journal of Geophysical Research 97: 7373–7382.CrossRefGoogle Scholar
  39. Wanninkhof, R., J. R. Ledwell, andW. S. Broecker. 1985. Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake.Science 227:1224–1226.CrossRefGoogle Scholar
  40. Weiss, R. F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas.Marine Chemistry 2:203–215.CrossRefGoogle Scholar
  41. Zappa, C. J., P. A. Raymond, E. A. Terray, andW. R. McGillis. 2003. Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary.Estuaries 26: 1401–1415.Google Scholar

Copyright information

© Estuarine Research Federation 2004

Authors and Affiliations

  • Alberto Vieira Borges
    • 1
  • Jean-Pierre Vanderborght
    • 2
  • Laure-Sophie Schiettecatte
    • 1
  • Frédéric Gazeau
    • 1
    • 3
  • Sarah Ferrón-Smith
    • 4
  • Bruno Delille
    • 1
  • Michel Frankignoulle
    • 1
  1. 1.Institut de Physique (B5)Université de Liège, MARE, Unité d'Océanographie ChimiqueSart-TilmanBelgique
  2. 2.Laboratoire d'Océanographie Chimique et Géochimie des EauxUniversité Libre de BruxellesBruxellesBelgique
  3. 3.UMR 7093 CNRS-UPMCLaboratoire d'Océanographie de VillefrancheVillefranche-sur-mer CedexFrance
  4. 4.Universidad de Cádiz, Facultad de Ciencias del Mar y AmbientalesPuerto RealEspaña

Personalised recommendations