Biosynthesis of proanthocyanidins in barley: Genetic control of the conversion of dihydroquercetin to catechin and procyanidins

  • Klaus Nyegaard Kristiansen
Article

Abstract

The conversion of dihydroquercetin to catechin and procyanidin was studied in maturing wild type barley (Hordeum vulgare L., cv. Nordal) seeds and proanthocyanidin free mutants blocked in four different genes,ant 13, ant 17, ant 18 andant 19. In the wild type barley grown under controlled conditions, maximal rate of synthesis of catechin, procyanidin B3 and procyanidin C2 occurred 8–16 days after flowering. Dihydroquercetin was radioactively labelled by feeding (1-14C)-acetate and (2-14C)-acetate to flowerbuds of a petunia mutant accumulating this flavonoid. When fed to pericarp-testa tissue of wild type barley labelled catechin, procyanidin B3 and procyanidin C2 were synthesized establishing dihydroquercetin as a precursor of these compounds. In addition labelled 2,3-trans-3,4-cis-leucocyanidin was synthesized indicating that this compound is an intermediate. The leucocyanidin was identified by co-chromatography with an authentic standard prepared chemically by reduction of dihydroquercetin with NaBH4. The major product of this reduction, however, was the 2,3-trans-3,4-trans-leucocyanidin. Only mutantant 18-102 accumulated dihydroquercetin in the seeds. Feeding (14C)-dihydroquercetin to pericarp-testa tissue from the mutants revealed thatant 17-139 was capable of synthesizing significant amounts of labelled catechin and procyanidin, whereasant 13-101,ant 13-152,ant 18-102 andant 19-109 synthesized none or only very small amounts of these compounds. It is concluded that (i)ant 18 controls the reduction of dihydroquercetin to 2,3-trans-3,4-cis-leucocyanidin, (ii)ant 19 controls the reduction of the leucocyanidin to catechin, and (iii)ant 13 andant 17 control unidentified steps prior to dihydroquercetin.

Keywords

Flavonoid biosynthesis leucocyanidin isomers ant mutants genetic control high pressure liquid chromatography 1H NMR mass spectroscopy 

Abbreviations

BAW

n-butanol-acetic acid-water

BW

n-butanol-water

CAW

chloroform-acetic acid-water

H NMR

proton nuclear magnetic resonance

HOAc

acetic acid

HPLC

high pressure liquid chromatography

MS

massspectroscopy

sBAWC

s-butanol-acetic acid-water-chloroform

3,4-cis-diol

(2R,3S,4S)-3,4,5,7,3′,4′-hexahydroxyflavan

3,4-trans-diol

(2R,3S,4R)-3,4,5,7,3′,4′-hexahydroxyflavan

TLC

thin layer chromatography

UV

ultra violet

WsB

water saturated s-butanol

References

  1. 1.
    Aastrup, S., H. Outtrup &K. Erdal: Location of the proanthocyanidins in the barley grain. Carlsberg Res. Commun. 49, 105–109 (1984)Google Scholar
  2. 2.
    Baig, M.I., J.W. Clark-Lewis &M.J. Thompson: Flavan derivatives XXVII. Synthesis of a new racemate of leucocyanidin tetramethyl ether (2,3-cis-3,4-trans-isomer): N.M.R. spectra of the four racemates of leucocyanidin tetramethyl ether (5,7,3′,4′-tetramethoxyflavan-3,4-diol). Aust. J. Chem. 22, 2645–2650 (1969)Google Scholar
  3. 3.
    Barz, W. &W. Hosel: Metabolism of flavonoids. In: The Flavonoids. J.B. Harborne, T.J. Mabry & H. Mabry, eds., Chapman & Hall, London, pp. 916–969 (1975)Google Scholar
  4. 4.
    Botha, J.J., D. Ferreira &D.G. Roux: Synthesis of condensed tannins. Part 4. A direct biomimetic approach to (4,6)-and (4,8)-biflavanoids. J. Chem. Soc. Perkin Trans. I, 1235–1245 (1981)CrossRefGoogle Scholar
  5. 5.
    Brandon, M.J., L.Y. Foo, L.J. Porter &P. Meredith: Proanthocyanidins of barley and sorghum: Composition as a function of maturity of barley ears. Phytochemistry 21, 2953–2957 (1982)CrossRefGoogle Scholar
  6. 6.
    Britsch, L., W. Heller &H. Grisebach: Conversion of flavanone to flavone, dihydroflavonol and flavonol with an enzyme system from cell cultures of parsley. Z. Naturforsch. 36c, 742–750 (1981)Google Scholar
  7. 7.
    Clark-Lewis, J.W.: Flavan derivatives XXV. Mass spectra of 3-hydroxyflavanones, flavan-3-ols, and flavan-3,4-diols. Aust. J. Chem. 21, 3025–3054 (1968)Google Scholar
  8. 8.
    Creasy, L.L. &T. Swain: Structure of condensed tannins. Nature 208, 151–153 (1965)PubMedCrossRefGoogle Scholar
  9. 9.
    Delcour, J.A., D. Ferreira &D.G. Roux: Synthesis of condensed tannins. Part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. J. Chem. Soc. Perkin Trans. I, 1711–1717 (1983)CrossRefGoogle Scholar
  10. 10.
    Ebel, J. &K. Hahlbrock: Biosynthesis. In: The Flavonoids: Advances in Research. J.B. Harborne & T.J. Mabry, eds., Chapman & Hall, London. pp. 641–679 (1982)Google Scholar
  11. 11.
    Fonknechten, G., M. Moll, D. Cagniant, G. Kirsch &J.F. Muller: Synthesis and characterisation of dimers of catechin and epicatechin. J. Inst. Brew. 89, 424–431 (1983)Google Scholar
  12. 12.
    Forkmann, G., W. Heller &H. Grisebach: Anthocyanin biosynthesis in flowers of Matthiola incana. Flavanone 3- and flavonoid 3′-hydroxylases. Z. Naturforsch. 35c, 691–695 (1980)Google Scholar
  13. 13.
    Fritsch, H. &H. Grisebach: Biosynthesis of cyanidin in cell cultures of Haplopappus gracilis. Phytochemistry 14, 2437–2442 (1975)CrossRefGoogle Scholar
  14. 14.
    Gerats, A.G.M., P. de Vlaming, M. Doodeman, B. Al &A.W. Schram: Genetic control of the conversion of dihydroflavonols into flavonols and anthocyanins in flowers of Petunia hybrida. Planta 155, 364–368 (1982)CrossRefGoogle Scholar
  15. 15.
    Glennie, C.W.: Preharvest changes in polyphenols, peroxidase, and polyphenol oxidase in sorghum grain. J. Agric. Food Chem. 29, 33–36 (1981)PubMedCrossRefGoogle Scholar
  16. 16.
    Glennie, C.W., W.Z. Kaluza &P.J. van Niekerk: High-performance liquid chromatography of procyanidins in developing sorghum grain. J. Agric. Food Chem. 29, 965–968 (1981)CrossRefGoogle Scholar
  17. 17.
    Goldstein, J.L. &T. Swain: Changes in tannins in ripening fruits. Phytochemistry 2, 371–383 (1963)CrossRefGoogle Scholar
  18. 18.
    Grisebach, H. &W. Barz: Biochemie der Flavonoide. Naturwissenschaften 56, 538–544 (1969)PubMedCrossRefGoogle Scholar
  19. 19.
    Gupta, R.K. &E. Haslam: Plant proanthocyanidins. Part 5. Sorghum polyphenols. J. Chem. Soc. Perkin Trans. I, 892–896 (1978)CrossRefGoogle Scholar
  20. 20.
    Hahlbrock, K. &H. Grisebach: Biosynthesis of flavonoids. In: The Flavonoids. J.B. Harborne, T.J. Mabry & H. Mabry, eds., Chapman & Hall, London, pp. 866–915 (1975)Google Scholar
  21. 21.
    Haslam, E.: Natural proanthocyanidins. In: The Flavonoids. J.B. Harborne, T.J. Mabry & H. Mabry, eds., Chapman & Hall, London, pp. 505–559 (1975)Google Scholar
  22. 22.
    Haslam, E.: symmetry and promiscuity in procyanidin biosynthesis. Phytochemistry 16, 1625–1640 (1977)CrossRefGoogle Scholar
  23. 23.
    Haslam, E.: Proanthocyanidins. In: The Flavonoids: Advances in Research. J.B. Harborne & T.J. Mabry, eds., Chapman & Hall, London. pp. 417–447 (1982)Google Scholar
  24. 24.
    Hemingway, R.W., L.Y. Foo &L.J. Porter: Linkage isomerism in trimeric and polymeric 2,3-cis-procyanidins. J. Chem. Soc. Perkin Trans. I, 1209–1216 (1982)CrossRefGoogle Scholar
  25. 25.
    Hemingway R.W. & L.Y. Foo: Condensed tannins: Quinone methide intermediates in procyanidin synthesis J. Chem. Soc. Chem. Commun., 1035–1036 (1983)Google Scholar
  26. 26.
    Jacques, D., C.T. Opie, L.J. Porter &E. Haslam: Plant proanthocyanidins. Part 4. Biosynthesis of procyanidins and observations on the metabolism of cyanidin in plants. J. Chem. Soc. Perkin Trans. I, 1637–1643 (1977)CrossRefGoogle Scholar
  27. 27.
    Jende-Strid, B.: Mutations affecting flavonoid synthesis in barley. Carlsberg Res. Commun. 43, 265–273 (1978)CrossRefGoogle Scholar
  28. 28.
    Jende-Strid, B.: Characterization of mutants in barley affecting flavonoid synthesis. In: Barley Genetics IV. Proc. 4th Int. Barley Genet. Symp., pp. 631–634 (1981)Google Scholar
  29. 29.
    Jende-Strid, B. &B.L. Møller: Analysis of proanthocyanidins in wild type and mutant barley (Hordeum vulgare L.). Carlsberg Res. Commun. 46, 53–64 (1981)Google Scholar
  30. 30.
    Karl, C., G. Muller &P.A. Pedersen: Ein neues Catechinglykosid aus Polypodium vulgare. Z. Naturforsch. 37c, 148–151 (1982)Google Scholar
  31. 31.
    Kho, K.F.F., G.J.H. Bennink &H. Wiering: Anthocyanin synthesis in a white flowering mutant of Petunia hybrida by a complementation technique. Planta 127, 271–279 (1975)CrossRefGoogle Scholar
  32. 32.
    Markham, K.R.: Techniques of flavonoid identification. Academic Press, London, (1982)Google Scholar
  33. 33.
    Outtrup, H.: Structure of prodelphinidins in barley. Eur. Brewery Conv., Congr., Proc. Copenhagen 1981, 323–333 (1981)Google Scholar
  34. 34.
    Outtrup, H. &K. Schaumburg: Structure elucidation of some proanthocyanidins in barley by1H 270 MHz NMR spectroscopy. Carlsberg Res. Commun. 46, 43–52 (1981)Google Scholar
  35. 35.
    Patschke, L. &H. Grisebach: 4,2′, 4′,6′-Tetrahydroxychalcon-2′-glucosid-(β-14C) als Vorstufe für Catechine im Tee. Z. Naturforsch. 20b, 399 (1965)Google Scholar
  36. 36.
    Porter, I.J. &L.Y. Foo: Leucocyanidin: Synthesis and properties of (2R,3S,4R)-(+)-3,4,5,7,3′,4′-hexahydroxyflavan. Phytochemistry 21, 2947–2952 (1982)CrossRefGoogle Scholar
  37. 37.
    Stafford, H.A.: Enzymic regulation of procyanidin biosynthesis, lack of a flav-3-en-3-ol intermediate. Phytochemistry 22, 2643–2646 (1983)CrossRefGoogle Scholar
  38. 38.
    Stafford, H.A. &H.H. Lester: Procyanidins (condensed tannins) in green cell suspension cultures of Douglas fir compared with those in strawberry and avocado leaves by means of C18-reversed-phase chromatography. Plant Physiol. 66, 1085–1090 (1980)PubMedGoogle Scholar
  39. 39.
    Stafford, H.A. &H.H. Lester: Proanthocyanindins and potential precursors in needles of Douglas fir and in cell suspension cultures derived from seedling shoot tissues. Plant Physiol. 68, 1035–1040 (1981)PubMedGoogle Scholar
  40. 40.
    Stafford, H.A., M. Shimamoto &H.H. Lester: Incorporation of (14C)-phenylalanine into flavan-3-ols and procyanidins in cell suspension cultures of Douglas fir. Plant Physiol. 69, 1055–1059 (1982)PubMedGoogle Scholar
  41. 41.
    Stafford, H.A. &H.H. Lester: Enzymic and nonenzymic reduction of (+)-dihydroquercetin to its 3,4-diol. Plant Physiol. 70, 695–698 (1982)PubMedCrossRefGoogle Scholar
  42. 42.
    Tanaka, T., G-I. Nonaka &I. Nishioka: 7-O-galloyl-(+)-catechin and 3-O-galloylprocyanidin B-3 from Sanguisorba officinalis. Phytochemistry 22, 2575–2578 (1983)CrossRefGoogle Scholar
  43. 43.
    Wettstein, D. von, B. Jende-Strid, B. Ahrenst-Larsen &K. Erdal: Proanthocyanidin free barley prevents the formation of beer haze. MBAA Technical Quarterly 17, 16–23 (1980)Google Scholar
  44. 44.
    Zaprometov, M. &H. Grisebach: Dihydrokaempferol as precursor for catechins in the tea plant. Z. Naturforsch 28c, 113–115 (1973)Google Scholar

Copyright information

© Carlsberg Laboratory 1984

Authors and Affiliations

  • Klaus Nyegaard Kristiansen
    • 1
    • 2
  1. 1.Department of PhysiologyCarlsberg LaboratoryCopenhagen Valby
  2. 2.Institute of GeneticsUniversity of CopenhagenCopenhagen K

Personalised recommendations