Science in China Series D: Earth Sciences

, Volume 44, Issue 1, pp 34–46 | Cite as

A Mössbauer effect study of Fe3+ bearing γ-Fe2SiO4

  • Zhe LiEmail author
  • I. Shinno
  • Danian Ye
  • Pingqiu Fu
  • Yueming Zhang


Three synthetic Fe3+ bearing λ-Fe2SiO4 were analyzed using electron probe method, and the Mössbauer spectra of the samples at 298 K, 150 K, and 95 K were measured. Each spectrum at three temperatures is composed of two doublets. These two doublets are assigned to Fe2+ in the octahedral sites and Fe3+ in the tetrahedral sites, respectively. Site occupancies were determined. The results show that Fe3+ and a small amount of Si4+ are in the tetrahedral and octahedral sites, respectively. The average bond lengths of the octahedral and tetrahedral sites were calculated according to the equations primarily given by Hill et al., O’Neill and Navrotsky and modified by the authors. Furthermore, the octahedral and tetrahedral bond lengths were used to calculate cell parameters and oxygen parameters. In addition, Fe3+ line broadening in the Mössbauer spectra of Fe3+ bearing λ-Fe2SiO4 were interpreted by using the next nearest neighbor effects


Fe3+bearing iron silicate spinel Mössbauer effect bond lengths cell parameters oxygen parameters next nearest neighbor effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ringwood, A. E., Constitution of the mantle-III. Further data on the olivine-spinel transition, Geoch. Cosmoch. Acta, 1958, 15: 18.CrossRefGoogle Scholar
  2. 2.
    Ringwood, A. E., Prediction and confirmation of olivine-spinel transformation in Ni2SiO4, Geoch. Cosmoch. Acta, 1962, 26: 457.CrossRefGoogle Scholar
  3. 3.
    Ringwood, A. E., Olivine-spinel transformation in cobalt orthosilicate, Nature, 1963, 198: 79.CrossRefGoogle Scholar
  4. 4.
    Akimoto, S. I., Ida, Y., High-pressure synthesis of Mg2SiO4 spinel, Earth Planet Sci. Lett., 1966, 1: 358.CrossRefGoogle Scholar
  5. 5.
    Suito, K., Phase transformations of pure Mg2SiO4 into a spinel structure under high pressure and temperature, J. Phys. Earth, 1972, 20: 225.Google Scholar
  6. 6.
    Morimoto, N., Tokonami, M., Watanabe, M. et al., Crystal structures of three polymorphs of Co2SiO4, Amer. Mineral., 1974, 59: 475.Google Scholar
  7. 7.
    Yagi, T., Morumo, F., Akimoto, S., Crystal structure of spinel polymorphs of Fe2SiO4 and Ni2SiO4, Amer. Mineral., 1974, 59: 486.Google Scholar
  8. 8.
    Ma, C. B., Phase equilibria and crystal chemistry in the SiO2-Ni2O-NiAl2O4, Ph. D. Thesis, Cambridge, Massachusetts: Harvard University, 1972, 1–35.Google Scholar
  9. 9.
    Fu, P. Q., Xie, H. S., Zhang, L. M., A structure-mineralogical study of ringwoodite, J. Geochem., 1990, 9: 99.CrossRefGoogle Scholar
  10. 10.
    Choe, L., Ingalls, R., Brown, J. M. et al., Mössbauer studies of iron silicate spinel at high pressure, Phys. Chem. Minerals, 1992, 19: 236.CrossRefGoogle Scholar
  11. 11.
    O’Neill, H. St. C., McCammon, C. A., Mössbauer spectroscopy of mantle transition zone phase and determination of minimum Fe3+ content, Amer. Mineral., 1993, 78: 456.Google Scholar
  12. 12.
    Hill, R. J., Craig, J. R., Gibbs, G. V., Systematics of the spinel structure type, Phys. Chem. Minerals, 1979, 4: 317.CrossRefGoogle Scholar
  13. 13.
    O’Neill, H. S., Navrotsky, A., Simple spinel: crystallographic parameters, cation radii, lattice energies and cation distribution, Amer. Mineral., 1983, 68: 181.Google Scholar
  14. 14.
    Ye, D. N., Su, S. C., Gibbs, G. V., Variation of the grand mean value of Si-O distances in metamorphic reactions, in Commemorative Papers for Professor Yukio Matsumoto: Exploration of Volcanoes and Rocks in Japan, China and Antarctica (ed. Commemorative Committee for Professor Yukio Matsumota), Yamaguchi Prefecture (Japan): Yamaguchi Press, 1992, 475–477.Google Scholar
  15. 15.
    Bancroft, G. M., Mössbauer spectroscopy: An Introduction for Inorganic Chemists and Geochemists, London: McGraw-Hill, 1973, 155–221.Google Scholar
  16. 16.
    Annersten, H., Halenius, U., Iron distribution in pink muscovite, a discussion., Amer. Mineral., 1976, 61: 1045.Google Scholar
  17. 17.
    Marshall, L., Dollase, W., Cation arrangement in Fe-Zn-Cr spinel oxides, Amer. Mineral., 1984, 69: 928.Google Scholar
  18. 18.
    Steffen, G., Seifert, F., Amthauer, G., Ferric iron in sapphire: a Mössbauer spectroscopic study, Amer. Mineral., 1984, 69: 339.Google Scholar
  19. 19.
    Wood, B. J., Virgo, D., Upper mantle oxidation state: Ferric iron contents of lherzolite spinel by57Fe Mössbauer spectroscopy and resultant oxygen fugacities, Geochim. Cosmochim. Acta, 1989, 53: 1277.CrossRefGoogle Scholar
  20. 20.
    Canil, D., Virgo, D., Scarfe, C. M., Oxidation state of mantle xenoliths from British Columbia, Canada, Contrib. Mineral. Petrol., 1990, 104: 453.CrossRefGoogle Scholar
  21. 21.
    Akasaka, M., Shinno, I., Mössbauer spectroscopy and its recent application to silicate mineralogy, Mineral. J. (in Japanese), 1992, 21: 3.Google Scholar
  22. 22.
    Li, Z., Grave, De. E., The correlation of Fe2+ isomer shifts with bond lengths and bond strengths in neso-and sorosilicates, Science in China, 1995, 38(5): 478.Google Scholar
  23. 23.
    Shinno, I., Hayashi, M., Kuroda, Y., Mössbauer studies of olivine, Mineral. J. (in Japanese), 1974, 7: 344.Google Scholar
  24. 24.
    Shinno, I., A Mössbauer study of ferric iron in olivine, Phys. Chem. Minerals, 1981, 7: 91.CrossRefGoogle Scholar
  25. 25.
    Schaefer, M. W., Site occupancy and two-phase character of “ferrifayalite”, Amer. Mineral., 1985, 70: 729.Google Scholar
  26. 26.
    Shannon, R. D., Prewitt, C. T., Effective ionic radii in oxides and fluorides, Acta Crystal., 1969, B25: 925.CrossRefGoogle Scholar
  27. 27.
    Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystal., 1976, A32: 751.CrossRefGoogle Scholar
  28. 28.
    Finger, L. W., Hazen, R. M., Yagi, T., Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure, Amer. Mineral., 1979, 64: 1002.Google Scholar
  29. 29.
    Thompson, J. B. Jr., Role of aluminum in the rock-forming silicates, Bull. Geol. Soc. Amer., 1947, 58: 1232.Google Scholar
  30. 30.
    Smith, J. V., Bailey, S. W., Second review of Al-O and Si-O tetrahedral distances, Acta Cryst., 1963, 16: 801.CrossRefGoogle Scholar
  31. 31.
    Brown, G. E., Gibbs, G. V., Oxygen coordination and the Si-O bond, Amer. Mineral., 1969, 54: 1528.Google Scholar
  32. 32.
    Baur, W. H., Ohta, T., The Si5O16 pentamer in zunyite refined and empirical relationsfor individual silicon-oxygen bonds, Acta Crystal., 1982, B36: 390.CrossRefGoogle Scholar
  33. 33.
    Smyth, J. R., Bish, D. L., Crystal Structures and Cation Sites of the Rock-forming Minerals, Winchester (USA): Allen & Unwin Ltd, 1988, 82–89.Google Scholar
  34. 34.
    Osborne, M. D., Fleet, M. E., Bancroft, G. M., Next nearest neighbor effects in the Mössbauer spectra of (Cr,Al) spinels, J. Solid State Chem., 1984, 53: 174.CrossRefGoogle Scholar
  35. 35.
    Li, Z., Stevens, J. G., Next nearest neighbor effect on tetrahedral ferrous and octahedral ferric ions in chromite, Science in China, Ser. B, 1986, 29(8): 889.Google Scholar
  36. 36.
    Chen, N. L., Xu, B. F., Chen, J. G. et al., Fe2+-Fe3+ ordered distribution inchromite spinels, Phys. Chem. Minerals, 1992, 19: 255.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Zhe Li
    • 1
    Email author
  • I. Shinno
    • 2
  • Danian Ye
    • 1
  • Pingqiu Fu
    • 3
  • Yueming Zhang
    • 3
  1. 1.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of Social and Cultural StudiesFukuokaJapan
  3. 3.Institute of GeochemistryChinese Academy of SciencesGuiyangChina

Personalised recommendations