Folia Geobotanica

, Volume 41, Issue 3, pp 289–304 | Cite as

Effect of cattle activities on gap colonization in mountain pastures

  • Florian Kohler
  • François Gillet
  • Jean-Michel Gobat
  • Alexandre Buttler


Cattle influences gap dynamics in pastures in two ways: (1) by creating gaps and (2) by affecting the colonization process. This effect of cattle activity on gap revegetation can be subdivided in three main factors: herbage removal, trampling and dung and urine deposition. The objective of this study was to assess how these three effects moderate the plant succession following gap creation.

In an exclosure, four controlled treatments simulating cattle activity (repeated mowing, trampling, manuring and untreated control) were applied on plots of 2 × 2 m. In the centre of each plot, one artificial gap of 60 × 60 cm was created. During three years, vegetation changes were monitored in spring and in autumn, with a square grid of 100 cells of 0.01 m2 centred on the gap.

Our experiment confirmed that fine-scale gap creation may have a high impact on relative abundances of species in the community. The gap environment acts on species as a filter and this filtering was described in terms of regenerative attributes. Colonizers were species with small seeds, unspecialized seed dispersal, persistent seed bank and high vegetation spread. However, the role of dung deposition, herbage removal or trampling by cattle did not seem to be of primary importance in the revegetation process, but could moderate vegetation response. Therefore, the different cattle effects act as secondary filters that selectively favoured or disadvantaged different species from the gap-regenerating community. These complex interactions are probably keys to understand plant coexistence in perennial grasslands.


Biodiversity Environmental filters Plant functional traits Principal response curves Spatial monitoring Swiss Jura Mountains 


  1. Abdelmagid A.H., Trlica M.J. &Hart R.H. (1987): Soil and vegetation responses to simulated trampling.J. Range Managem. 40: 303–306.CrossRefGoogle Scholar
  2. Anderson M.J. (2001): Permutation tests for univariate or multivariate analysis of variance and regression.Canad. J. Fish. Aquat. Sci. 58: 626–639.CrossRefGoogle Scholar
  3. Arnthorsdottir S. (1994): Colonization of experimental patches in mown grassland.Oikos 70: 73–79.CrossRefGoogle Scholar
  4. Bakker E.S. &Olff H. (2003): Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands.J. Veg. Sci. 14: 465–474.CrossRefGoogle Scholar
  5. Bonis A., Grubb P.J. &Coomes D.A. (1997): Requirements of gap-demanding species in chalk grassland: reduction of root competition versus nutrient-enrichment by animals.J. Ecol. 85: 625–633.CrossRefGoogle Scholar
  6. Brokaw N. &Busing R.T. (2000): Niche versus chance and tree diversity in forest gaps.Trends Ecol. Evol. 15: 183–188.PubMedCrossRefGoogle Scholar
  7. Bullock J.M., Hill C.B., Silvertown J. &Sutton M. (1995): Gaps colonization as a source of grassland community change: effects of gap size and grazing on the rate and mode of colonization by different species.Oikos 72: 273–282.CrossRefGoogle Scholar
  8. Burke M.J.W. &Grime J.P. (1996): An experimental study of plant community invasibility.Ecology 77: 776–790.CrossRefGoogle Scholar
  9. Deckers J.A., Nachtergaele F.O. &Spaargaren O.C. (eds.) (1998):World reference base for soil resources: Introduction. Publishing Company Acco, Leuven.Google Scholar
  10. Frampton G.K., Van Den Brink P.J. &Gould P.J.L. (2000): Effects of spring precipitation on a temperate arable collembolan community analysed using Principal Responses Curves.Appl. Soil Ecol. 14: 231–248.CrossRefGoogle Scholar
  11. Gigon A. &Leutert A. (1996): The Dynamic keyhole-key model of coexistence to explain diversity of plants in limestone and other grasslands.J. Veg. Sci. 7: 29–40.CrossRefGoogle Scholar
  12. Goldberg D.E. (1987): Seedling colonization of experimental gaps in two old-field communities.Bull. Torrey Bot. Club 114: 139–148.CrossRefGoogle Scholar
  13. Grime J.P. (2001):Plant strategies and vegetation processes. Wiley, Chichester.Google Scholar
  14. Grime J.P., Hodgson J.G. &Hunt R. (1988):Comparative plant ecology. Unwinn Hyman, London.Google Scholar
  15. Herben T., Krahulec F., Hadincová V. &Kovářová M. (1993): Small-scale spatial dynamics of plant-species in a grassland community over six years.J. Veg. Sci. 4: 171–178.CrossRefGoogle Scholar
  16. Hobbs R.J. &Hobbs V.J. (1987): Gophers and grassland: a model of vegetation response to patchy soil disturbance.Vegetatio 69: 141–146.CrossRefGoogle Scholar
  17. Hubbell S.P., Foster R.B., O’brien S.T., Harms K.E., Condit R., Wechsler B. &Lao S.L. (1999): Light-cap disturbances, recruitment limitation, and tree diversity in a neotropical forest.Science 283: 554–557.PubMedCrossRefGoogle Scholar
  18. Julve Ph. (1998):Baseflor. Index botanique, écologique et chorologique de la flore de France. Version: 8 septembre 2003. URL: Scholar
  19. Kalamees R. &Zobel M. (2002): The role of seed bank in gap regeneration in a calcareous grassland community.Ecology 83: 1017–1025.CrossRefGoogle Scholar
  20. Klimeš L. (1995): Small-scale distribution of species richness in grassland (Bílé Karpaty Mts., Czech Republic).Folia Geobot. Phytotax. 30: 499–510.CrossRefGoogle Scholar
  21. Klimeš L. (1999): Small-scale plant mobility in a species-rich grassland.J. Veg. Sci. 10: 209–218.CrossRefGoogle Scholar
  22. Klimeš L., Klimešová J., Hendriks R. &van Groenendael J. (1997): Clonal plant architecture: a comparative analysis form and function. In: DE Kroon H. & Van Groenendael J. (eds.),The ecology and evolution of clonal plants, Backhuys, Leiden, pp. 1–29.Google Scholar
  23. Klotz F., Kühn I. &Durra W. (2002):BIOLFLOR — Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Bundesamt für Naturschutz, Bonn.Google Scholar
  24. Kohler F., Gillet F., Gobat J.-M. &Buttler A. (2004a): Seasonal vegetation changes in mountain pastures due to simulated effects of cattle grazing.J. Veg. Sci. 15: 143–150.CrossRefGoogle Scholar
  25. Kohler F., Gillet F., Progin M.-A., Gobat J.-M. &Buttler A. (2004b): Seasonal dynamics of plant species at fine scale in wooded pastures.Community Ecol. 5: 7–17.CrossRefGoogle Scholar
  26. Kotanen P.M. (1997): Effects of gap area and shape on recolonization by grassland plants with differing reproductive strategies.Canad. J. Bot. 75: 352–361.Google Scholar
  27. Lavorel S., Rochette C. &Lebreton J.-D. (1999): Functional groups for response to disturbance in Mediterranean old fields.Oikos 84: 480–498.CrossRefGoogle Scholar
  28. Lavorel S., Lepart J., Debussche M., Lebreton J.-D. &Beffy J.-L. (1994): Small-scale disturbances and the maintenance of species diversity in Mediterranean old fields.Oikos 70: 455–473.CrossRefGoogle Scholar
  29. Lavorel S., Touzard B., Lebreton J.-D. &Clément B. (1998): Identifying functional groups for response to disturbance in an abandoned pasture.Acta Oecol. 19: 227–240.CrossRefGoogle Scholar
  30. Legendre P. &Gallagher E.D. (2001): Ecologically meaningful transformations for ordination of species data.Oecologia 129: 271–280.CrossRefGoogle Scholar
  31. Legendre P. &Legendre L. (1998):Numerical ecology. 2nd English ed. Elsevier, Amsterdam.Google Scholar
  32. Macek P. &Lepš J. (2003): The effect of environmental heterogeneity on clonal behaviourof Prunella vulgaris L.Pl. Ecol. 168: 31–43.CrossRefGoogle Scholar
  33. Malo J.E., Jimenez B. &Suarez F. (1995): Seed bank build-up in small disturbances in a Mediterranean pasture: the contribution of endozoochorous dispersal by rabbits.Ecography 18: 73–82.CrossRefGoogle Scholar
  34. Mariott C.A., Fisher J.M., Hood K.J. &Smith M.A. (1997): Persistence and colonization of gaps in sown swards of grass and clover under different sward management.Grass Forage Sci. 52: 156–166.CrossRefGoogle Scholar
  35. Martinsen G.D., Cushman J.H. &Whitham T.G. (1990): Impact of pocket gopher disturbance on plant-species diversity in a shortgrass prairie community.Oecologia 83: 132–138.CrossRefGoogle Scholar
  36. Milberg P. (1993): Seed bank and seedling emerging after soil disturbance in a wet semi-natural grassland in Sweden.Ann. Bot. Fenn. 30: 9–13.Google Scholar
  37. Otsus M. &Zobel M. (2002): Small-scale turnover in a calcareous grassland, its pattern and components.J. Veg. Sci. 13: 199–206.CrossRefGoogle Scholar
  38. Pakeman R.J., Attwood J.P. &Engelen J. (1998): Sources of plants colonizing experimentally disturbed patches in an acidic grassland, in eastern England.J. Ecol. 86: 1032–1041.CrossRefGoogle Scholar
  39. Pakeman R.J. &Small J.L. (2005): The role of the seedbank, seed rain and the timing of disturbance in gap regeneration.J. Veg Sci. 16: 121–130.CrossRefGoogle Scholar
  40. Pickett S.T.A., Kolasa J., Armesto J.J. &Collins S.L. (1989): The ecological concept of disturbance and its expression at various hierarchical levels.Oikos 54: 129–136.CrossRefGoogle Scholar
  41. R Development Core Team (2005):R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: Scholar
  42. Rapp J.K. &Rabinowitz D. (1985): Colonization and establishment of Missouri prairie plants on artificial soil disturbances. I. Dynamics of forb and graminoid seedlings and shoots.Amer. J. Bot. 72: 1618–1628.CrossRefGoogle Scholar
  43. Rogers W.E. &Hartnett D.C. (2001): Temporal vegetation dynamics and recolonization mechanisms on different-sized soil disturbances in tallgrass prairie.Amer. J. Bot. 88: 773–777.CrossRefGoogle Scholar
  44. Ryser J.-P., Walther U. &Flisch R. (2001): Données de base pour la fumure des grandes cultures et des herbages.Rev. Suisse Agric. 33: 1–80.Google Scholar
  45. Silvertown J. &Smith B.A. (1988): Mapping the microenvironment for seed germination in the field.Ann. Bot. (London) 63: 163–167.Google Scholar
  46. Špačková I. &Lepš J. (2004): Variability of seedling recruitment under dominant, moss and litter removal over four years.Folia Geobot. 29: 41–55.Google Scholar
  47. Suding K.N. (2001): The effects of gap creation on competitive interactions: separating changes in overall intensity from relative rankings.Oikos 94: 219–227.CrossRefGoogle Scholar
  48. Suding K.N. &Goldberg E.D. (2001): Do disturbance alter competitive hierarchies? Mechanisms of change following gap creation.Ecology 82: 2133–2149.CrossRefGoogle Scholar
  49. Suding K.N., Goldberg E.D. &Hartman K.M. (2003): Relationships among species traits: separating levels of response and identifying linkages to abundance.Ecology 84: 1–16.CrossRefGoogle Scholar
  50. Tamm A., Kull K. &Sammul M. (2002): Classifying clonal growth forms based on vegetative mobility and ramet longevity: whole community analysis.Evol. Ecol. 15: 383–401.CrossRefGoogle Scholar
  51. Ter Braak C.J.F. &Šmilauer P. (2002):CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
  52. Thompson K., Bakker J.P. &Bekker R. (1997):The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge.Google Scholar
  53. Tilman D. (1994): Competition and biodiversity in spatially structured habitats.Ecology 75: 2–16.CrossRefGoogle Scholar
  54. Tutin T.G., Heywood V.H., Burges N.A., Valentine D.H., Walters S.M. &Webb D.A. (1964–1980):Flora europaea 1–5. Cambridge University Press, Cambridge.Google Scholar
  55. Van Den Brink P.J. &Ter Braak C.J.F. (1999): Principal response curves: analysis of time-dependent multivariate responses of biological community to stress.Environm. Toxicol. Chem. 18: 138–148.CrossRefGoogle Scholar
  56. Van Der Maarel E. &Sykes M.T. (1993): Small-scale plant species turnover in a limestone grassland: the carousel model and some comments on the niche concept.J. Veg. Sci. 4: 179–188.CrossRefGoogle Scholar
  57. Vandvik V. (2004): Gap dynamics in perennial subalpine grassland: trends and processes change during secondary succession.J. Ecol. 92: 86–96.CrossRefGoogle Scholar
  58. Williams R.J. (1992): Gap dynamics in subalpine heathland and grassland vegetation in south-eastern Australia.J. Ecol. 80: 343–352.CrossRefGoogle Scholar
  59. Wright S.J., Muller-Landau H.C., Condit R. &Hubbell S.P. (2003): Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees.Ecology 84: 3174–3185.CrossRefGoogle Scholar
  60. Zobel M. (1997): The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence?Trends Ecol. Evol. 12: 266–169.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  • Florian Kohler
    • 1
    • 2
    • 3
  • François Gillet
    • 1
    • 3
  • Jean-Michel Gobat
    • 2
  • Alexandre Buttler
    • 1
    • 3
    • 4
  1. 1.Swiss Federal Research Institute WSL, Antenne romandeLausanneSwitzerland
  2. 2.Institute of Botany, Laboratory of Plant EcologyUniversity of NeuchâtelNeuchâtelSwitzerland
  3. 3.Laboratory of Ecological SystemsÉcole Polytechnique Fédérale de Lausanne EPFLLausanneSwitzerland
  4. 4.UFR Sciences et Techniques, Laboratory of Chrono-ecology, UMR CNRS 6565University of Franche-ComtéBesançonFrance

Personalised recommendations