Rendiconti Lincei

, Volume 12, Issue 1, pp 51–68

Microbes in rocks and meteorites: a new form of life unaffected by time, temperature, pressure

  • Bruno D’Argenio
  • Giuseppe Geraci
  • Rosanna del Gaudio


Crystals, rocks and mineral ores of different origins contain viable microbial life that appears actively swimming under the microscope when the sample is properly fragmented and suspended in a nutrient medium. This form of life in rocks is unaffected by time, since microbes have been found in samples of all geological ages, from about 2.8 Ga to recent rocks, and by pressure and temperature, since it is present in metamorphic and in igneous rocks. From the tests performed, among which those to secure from sample pollution, it emerges that this form of life is not destroyed, as indeed expected, when the rock is heated above 500 °C in a kiln. However, all cloned microbes are sensitive to growth inhibition by specific antibiotics. A similar search, for the presence of microbes in meteorites, shows that also these materials are rich in microorganisms, indicating that these already existed in early Earth formation stages. Some different microbial species, derived from different samples of rocks and meteorites, have been cultured, cloned and classified by 16S rDNA typing and found to be not essentially different from present day organisms. An interesting consequence of these findings, among others, is the support to the hypothesis that life came from outside Earth with the additional indication that it was already present in those materials that accreted to form the solar planetary system.

Key words

Life in rocks Life in meteorites Microbes Bioastronomy 

Microbi in rocce e in meteoriti: una nuova forma di vita non influenzata da tempo, temperatura, pressione


Cristalli, rocce e minerali di diversa origine contengono microrganismi vitali che si osservano nuotare attivamente al microscopio quando il campione solido è frammentato in modo appropriato, raccolto su un vetrino portaoggetti e sospeso in un mezzo nutriente. Questa forma di vita, quando è all’interno della roccia, non è influenzata dal tempo, perché sono stati trovati microrganismi vitali e coltivabili in campioni di diverse età, a partire da circa 2.8 Ga a rocce recenti, e dalla temperatura e pressione, perché è presente in rocce metamorfiche e in rocce ignee. In alcune prove, fra le molte fatte per assicurarsi da possibili contaminazioni, è risultato che questa forma di vita non è distrutta, come ci si sarebbe effettivamente aspettato, quando la roccia è riscaldata al di sopra di 500 °C in un forno per ceramica, mentre tutte le specie clonate non crescono in presenza di antibiotici specifici. La ricerca con lo stesso approccio di forme microbiche in meteoriti ha mostrato che esse sono ricche in microrganismi, indicando che questi già esistevano durante i primi stadi di formazione della Terra. Alcune specie microbiche, derivate da campioni di rocce e di meteoriti, sono state ottenute in coltura, clonate e classificate con il metodo della tipizzazione del 16S rDNA e sono risultate non dissimili dai microrganismi attuali. Questi risultati avvalorano l’ipotesi che la vita sia venuta dall’esterno della Terra e suggeriscono che fosse già presente nei materiali che, condensandosi, hanno generato i pianeti del sistema solare.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banfield J.F., Nealson K.H. (eds.), 1997.Geomicrobiology: Interactions between Microbes and Minerals. Mineralogical Society of America, Washington D.C., vol. 35.Google Scholar
  2. Barns S.M., Nierzwicki-Bauer S.A., 1997.Microbial diversity in ocean, surface and subsurface environments. In:J.F. Banfield, K.H. Nealson,Geomicrobiology: Interactions between Microbes and Minerals. Mineralogical Society of America, Washington D.C., vol. 35: 35–80.Google Scholar
  3. Cano R.J., Borucki M.K., 1995.Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science, 268: 1060–1064.CrossRefGoogle Scholar
  4. Drake M.J., 2000.Accretion and primary differentiation of the Earth. Geochim. Cosmochim. Acta, 64: 2363–2370.CrossRefGoogle Scholar
  5. Dworkin J.P., Deamer D.W., Sandford S.A., Allamandola L.J., 2001.Self assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc. Natl. Acad. Sci. USA, 98: 815–819.CrossRefGoogle Scholar
  6. Gillet Ph., Barrat J.A., Heulin Th., Achouak W., Lesourd M., Guyot F., Benzerara K., 2000.Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks. Earth and Planetary Science Letters, 175: 161–167.CrossRefGoogle Scholar
  7. Gogarten-Boekel Ml., Hilario H., Gogarten J.P., 1995.The effects of heavy meteorite bombardment on early evolution—The emergence of the three domains of life. Origins of Life and Evolution of the Biosphere, 25: 251–264.CrossRefGoogle Scholar
  8. Golubic S., Seong-Joo L., 1999.Early cyanobacterial fossils record: preservation, palaeoenvironments and identification. Eur. J. Phycol., 34: 339–348.CrossRefGoogle Scholar
  9. McKay D.S., Gibson E.K. Jr.,Thomas-Keprta K.L., Vali H., Romanek G.S., Clemett S.J., Chillier D.F., Maechling C.R., Zare R.N., 1996.Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273: 924–930.CrossRefGoogle Scholar
  10. Nisbet E.G., 2000.The realms of Archean life. Nature, 405: 625–626.CrossRefGoogle Scholar
  11. Papike J.J. (ed.), 1998.Planetary Materials. Mineralogical Society of America, Washington D.C., vol. 36.Google Scholar
  12. Rasmussen R., 2000.Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature, 405: 676–679.CrossRefGoogle Scholar
  13. Rosing M.T., 1999.13 C-depleted carbon in >3700 Ma seafloor sedimentary rocks from West Greenland. Science, 283: 674–676.CrossRefGoogle Scholar
  14. Shen Y., Buick R., Canfield D.E., 2001.Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature, 410: 77–81.CrossRefGoogle Scholar
  15. Sleep N.H., Zahnle K., Neuhoff P.S., 2001.Carbon dioxide cycling and implications for climate on ancient Earth. Journal of Geophysical Research, 106, in press.Google Scholar
  16. Taylor B., Huchon P., Klaus A., Leg 181 Scientific Party, 1999.Continental rifting, Low-angle Normal faulting and Deep Biosphere: Results of Leg 181 Drilling in the Woodlark Basin. Joides Journal, vol. 25, n. 1: 4–7.Google Scholar
  17. Vreeland R.H., Rosenzweig W.D., Powers D.W., 2000.Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 407: 896–900.CrossRefGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Bruno D’Argenio
    • 1
    • 2
  • Giuseppe Geraci
    • 3
  • Rosanna del Gaudio
    • 3
  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di Napoli «Federico II»Napoli
  2. 2.Istituto di Ricerca Geomare Sud, CNRNapoli
  3. 3.Dipartimento di Genetica, Biologia Generale e MolecolareUniversità degli Studi di Napoli «Federico II»Napoli

Personalised recommendations