Advertisement

Rendiconti Lincei

, Volume 9, Issue 3, pp 213–226 | Cite as

Ipotesi sul ruolo del trofismo nell’evoluzione di ammoniti con conchiglie svolte: le radiazioni adattative delle Ancyloceratina (Ammonoidea) alla fine del Giurassico e nel Cretaceo inferiore

  • Fabrizio Cecca
Article

Riassunto

Il sottordine polifiletico Ancyloceratina ebbe un considerevole successo evolutivo nel corso del Cretaceo. La radiazione delle Protancyloceratidae ebbe inizio nel Titoniano mentre quella delle Crioceratitinae (progenitrici di tutte le altre Ancyloceratina cretacee) alla fine del Valanginiano. Questi due gruppi si originarono dalle Perisphinctacea ma da famiglie diverse ed in tempi diversi. Poiché lo svolgimento dei giri è un carattere sviluppato alla fine della crescita di molte ammoniti ad avvolgimento planospiralato, si ipotizza l’effetto di un processo eterocronico di accelerazione nello sviluppo di questo carattere a stadi di crescita sempre più precoci. Le forme che svilupparono conchiglie svolte furono avvantaggiate, a cavallo tra i periodi Giurassico e Cretaceo, dalle nuove opportunità trofiche che si crearono a seguito di importanti cambiamenti paleogeografici e paleoambientali su scala globale. Viene respinta l’ipotesi del ruolo delle variazioni eustatiche quale fattore dell’evoluzione di queste forme.

Hypotheses about the role of the trophism in the evolution of uncoiled ammonites: the adaptive radiations of the Ancyloceratina (Ammonoidea) at the end of the Jurassic and in the Lower Cretaceous

Abstract

The poliphyletic suborder Ancyloceratina was evolutionarily successful during the Cretaceous. The radiation of the Protancyloceratidae began in the Tithonian whilst that of the Crioceratitinae (the ancestors of all other Cretaceous Ancyloceratina) is recorded at the end of the Valanginian. Both groups sprang from Perisphinctaceae though from different families and at different times. Because the shell decoiling is a character developed at the end of the growth in most normally coiled ammonites, a heterocronic process of acceleration is invoked to explain the onset of this character at earlier stages. New trophic opportunities favoured the development of uncoiled shells during the Jurassic-Cretaceous transition because of global palaeogeographic and palaeoenvironmental changes. The hypothesis of the eustatic control as factor of the evolution of the uncoiled ammonites is rejected.

Key words

Palaeontology Evolution Ammonites Mesozoic Tethys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Arkell W. J., Kummel B., Wright C. W., 1957.Mesozoic Ammonoidea. In:R. C. Moore (ed.),Treatise on Invertebrate Paleontology. Part L. Mollusca 4. Cephalopoda. Ammonoidea. Geol. Soc. Amer. & Univ. Kansas Press, New York, Lawrence: L80-L465.Google Scholar
  2. Barthel K. W., Geyssant J. R., 1973.Additional Tethydian ammonites from the lower Neuburg formation (Middle Tithonian, Bavaria). N. Jb. Geol. Paläont. Mh., 1: 18–36.Google Scholar
  3. Batt R. J., 1993.Ammonite morphotypes as indicators of oxygenation in a Cretaceous epicontinental sea. Lethaia, 26: 49–63.CrossRefGoogle Scholar
  4. Cecca F., 1997.Late Jurassic and Early Cretaceous uncoiled ammonites: trophism-related evolutionary processes. C. R. Acad. Sci. Paris, sér. II, 325: 629–634.Google Scholar
  5. Cecca F., 1998.Early Cretaceous (pre-Aptian) ammonites of the Mediterranean Tethys: palaeoecology and palaeobiogeography. Palaeogeogr. Palaeoclimat. Palaeoecol., 138: 305–323.CrossRefGoogle Scholar
  6. Cecca F., Santantonio M., 1989.Kimmeridgian and Lower Tithonian ammonite assemblages in the Umbria-Marches-Sabine Apennines (Central Italy). In:R. B. Rocha, A. F. Soares (eds.),2nd International Symposium on Jurassic Stratigraphy. Lisboa: 525–542.Google Scholar
  7. Cecca F., Fözy I., Wierzbowski A., 1990.Signification paléoécologique des faunes d’ammonites du Tithonique inférieur de la Téthys occidentale. C. R. Acad. Sci. Paris, sér. II, 311: 501–507.Google Scholar
  8. Cecca F., Fourcade E., Azéma J., 1992.The disappearance of the «Ammonitico Rosso». Palaeogeogr. Palaeoclimat. Palaeoecol., 99: 55–70.CrossRefGoogle Scholar
  9. Company M., Hoedemaeker P. J., Sandoval J., Tavera J. M., 1995.Lower Cretaceous of the Subbetic and Prebetic Ranges. Mula (SE Spain), July 2–5, 1992. Géologie Alpine, mém. H. S., 20: 401–420.Google Scholar
  10. Delanoy G., Féraud P., 1995.On the genus SpinocriocerasKEMPER, 1973 (Ammonoidea, Ancyloceratina). Geol. Jb., A 141: 201–223.Google Scholar
  11. Delanoy G., Magnin A., 1994.Evolution de l’enroulement des ammonites hétéromorphes avec les événements marins. C. R. Acad. Sci. Paris, 318, sér. II: 843–848.Google Scholar
  12. Dietl G., 1978.Die heteromorphen Ammoniten des Dogger (Stratigraphie, Taxonomie, Phylogenie, Ökologie). Stutt. Beitr. Naturkunde, 33: 1–76.Google Scholar
  13. Doguzhaeva L., Mikhailova I., 1982.The genus Luppoviaand the phylogeny of Cretaceous heteromorphic ammonoids. Lethaia, 15: 55–65.CrossRefGoogle Scholar
  14. Doguzhaeva L., Mapes R. H., Mutvei H., 1997.Beaks and radulae of Early Carboniferous goniatites. Lethaia, 30: 305–313.Google Scholar
  15. Dommergues J.-L., David B., Marchand D., 1986.Les relations ontogenèse-phylogenèse: applications paléontologiques. Geobios, 19: 335–356.CrossRefGoogle Scholar
  16. Ebel K., 1992.Mode of life and soft body shape of heteromorph ammonites. Lethaia, 25: 179–193.CrossRefGoogle Scholar
  17. Enay R., Martin C., Monod O., Thieuloy J. P., 1971.Jurassique supérieur à ammonites (Kimméridgien — Tithonique) dans l’autochtone du Taurus de Beysehir (Turquie méridionale). Ann. Inst. Geol. Publ. Hungarici, 54: 397–422.Google Scholar
  18. Fourcade E., Azéma J., Cecca F., Dercourt J., Guiraud R., Sandulescu M., Ricou L. E., Vrielynck B., Cottereau N., Petzold M., 1993.Late Tithonian (138 to 135 Ma). In:J. Dercourt, L. E. Ricou, B. Vrielynck (eds.),Atlas Tethys Palaeoenvironmental Maps. Explanatory Notes, Gauthier-Villars, Paris: 113–134.Google Scholar
  19. Gould S. J., 1977.Ontogeny and Phylogeny. Harvard Univ. Press, Cambridge, Mass.: 1–501.Google Scholar
  20. Gould S. J., Gilinsky N. L., German R. Z., 1987.Asymmetry of lineages and the direction of evolutionary time. Science, 236: 1437–1441.CrossRefGoogle Scholar
  21. Gradstein F. M., Agterberg F. P., Ogg J. G., Hardenbol J., Van Veen P., Thierry J., Huang Z., 1994.A Mesozoic time scale. Journ. Geoph. Res., 99 (B12): 24,051–24,074.Google Scholar
  22. Hewitt R. A., Westermann G. E. G., 1987.Function of complexly fluted septa in ammonoid shells II. Septal evolution and conclusions. N. Jb. Geol. Paläont. Abh., 174: 135–169.Google Scholar
  23. Hoedemaeker P. J., 1995.Ammonite evidence for long-term sea-level fluctuations between the 2nd and 3rd order in the lowest Cretaceous. Cretaceous Research, 16: 230–241.Google Scholar
  24. Jäger M., Fraaye R., 1997.The diet of the Early Toarcian ammonite Harpoceras falciferum. Palaeontology, 40: 557–574.Google Scholar
  25. Kennedy W. J., Cobban W. A., 1976.Aspects of ammonite biology, biogeography and biostratigraphy. Palaeontology, special paper, 17: 1–94.Google Scholar
  26. Klinger H. C., 1981.Speculation on buoyancy control and ecology in some heteromorph ammonites. In:M. R. House, J. R. Senior (eds.),The Ammonoidea. Academic Press, Syst. Assoc., spec. vol. 18, London — New York: 337–355.Google Scholar
  27. Lehmann U., Weitschat W., 1973.Zur Anatomie und Ökologie von Ammoniten: Funde von Kropf und Kiemen. Paläont. Z., 47: 69–76.Google Scholar
  28. Lini A., Weissert H., Erba E., 1992.The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova, 4: 374–384.CrossRefGoogle Scholar
  29. Magniez - Jannin F., Dommergues J.-L., 1994.Foraminifères vs. ammonites en fosse vocontienne vers la limite Valanginien-Hauterivien. C. R. Acad. Sci. Paris, 319, sér. II: 957–962.Google Scholar
  30. Morton N., Nixon M., 1987.Size and function of ammonite aptychi in comparison with buccal masses of modern cephalopods. Lethaia, 20: 231–238.CrossRefGoogle Scholar
  31. Nixon M., 1996.Morphology of the jaws and radula in Ammonoids. In:N. Landman, K. Tanabe, R. A. Davis (eds.),Ammonoid Paleobiology. Topics in Geobiology, 13, Plenum Press, New York: 23–42.Google Scholar
  32. Reboulet S., 1996.L’évolution des ammonites du Valanginien supérieur — Hauterivien inférieur du bassin Vocontien et de la plate-forme proveņcale (Sud-Est de la France): relations avec la stratigraphie séquentielle et implications biostratigraphiques. Docum. Lab. Géol. Lyon, 137 (1995): 1–371.Google Scholar
  33. Santantonio M., 1986. Simoceras volanense (OPPEL), Simoceras aesinenseMENEGHINI e forme affini nel Titonico inferiore dell’Appennino umbro-marchigiano. In:G. Pallini (ed.), Atti Io ConvegnoFossili, Evoluzione, Ambiente (Pergola, 1984), Pergola: 11–36.Google Scholar
  34. Seilacher A., Gunji P. Y., 1993.Morphogenetic countdowns in heteromorph shells. N. Jb. Geol. Paläont. Abh., 190: 237–265.Google Scholar
  35. Seilacher A., La Barbera M., 1995.Ammonite as cartesian divers. Palaios, 10: 493–506.CrossRefGoogle Scholar
  36. Spath L. F., 1950.A new Tithonian ammonite fauna from Kurdistan, northern Iraq. Bull. Brit. Mus. Nat. Hist., 1: 95–137.Google Scholar
  37. Tanabe K., Fukuda Y., Kanie Y., Lehmann U., 1980.Rhyncholites and conchorhynchs as calcified jaw elements in some late Cretaceous ammonites. Lethaia, 13: 157–168.CrossRefGoogle Scholar
  38. Thieuloy J.-P., 1964.Un Céphalopode remarquable de l’Hauterivien basal de la Drôme: Himantocerasnov. gen. Bull. Soc. géol. France, sér. 7, VI: 205–213.Google Scholar
  39. Thieuloy J.-P., 1977.La zone à callidiscus du Valanginien supérieur vocontien (Sud-Est de la France). Lithostratigraphie, ammonitofaune, limite Valanginien-Hauterivien, corrélations. Géologie Alpine, 53: 83–143.Google Scholar
  40. Vašiček Z., Wiedmann J., 1994.The Leptoceratoidinae: small heteromorph ammonites from the Barremian. Palaeontology, 37: 203–239.Google Scholar
  41. Vermeij G. J., 1995.Economics, volcanoes, and Phanerozoic revolutions. Paleobiology, 21: 125–152.Google Scholar
  42. Ward P. D., 1981.Shell sculpture as a defensive adaptation in ammonoids. Paleobiology, 7: 96–100.Google Scholar
  43. Westermann G. E. G., 1996.Ammonoid life and habitat. In:N. Landman, K. Tanabe, R. A. Davis (eds.).Ammonoid Paleobiology. Topics in Geobiology, 13, Plenum Press, New York: 607–707.Google Scholar
  44. Wiedmann J., 1966.Stammesgeschichte und System der posttriadischen Ammonoideen. Ein Überblick. (2. Teil). N. Jb. Geol. Paläont. Abh., 127: 13–81.Google Scholar
  45. Wiedmann J., 1973a. Upper Triassic heteromorph ammonites. In:A. Hallam (ed.),Atlas of Palaeobiogeography. Elsev. Sc. Publ. Co.: 235–249.Google Scholar
  46. Wiedmann J., 1973b. Ancyloceratina (Ammonoidea) at the Jurassic/Cretaceous Boundary. In:A. Hallam (ed.),Atlas of Palaeobiogeography. Elsev. Sc. Publ. Co.: 309–316.Google Scholar
  47. Wierzbowski A., 1990.The taxonomy and phylogenetic significance of Early Tithonian ammonites of the genus ProtancylocerasSPATH from the Pieniny Klippen Belt (Carpathians, Poland). In:G. Pallini, F. Cecca, S. Cresta, M. Santantonio (eds.), Atti IIo ConvegnoFossili, Evoluzione, Ambiente (Pergola, 1984), Pergola: 479–489.Google Scholar
  48. Wright C. W., Callomon J. H., Howarth M. K., 1996.Cretaceous Ammonoidea. In:R. L. Kaesler (ed.),Treatise on Invertebrate Paleontology. Part L. Mollusca 4 Revised, volume 4. Geol. Soc. America and University Kansas, Boulder, Lawrence: 1–362.Google Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • Fabrizio Cecca
    • 1
  1. 1.Centre de Sédimentologie et PaléontologieUniversité de ProvenceMarseille Cedex 03Francia

Personalised recommendations