Advertisement

Rendiconti Lincei

, Volume 9, Issue 3, pp 201–211 | Cite as

Biostratigraphic, paleobiogeographic and paleoecological implications in the taxonomic review of Corallinaceae

  • Daniela Basso
  • Patrizia Favega
  • Michele Piazza
  • Grazia Vannucci
Article

Abstract

Some fossil species of nongeniculate coralline algae are synonyms of living species. These synonimies allow us to use stratigraphic distributions ofPhymatolithon calcareum (Pallas) Adey and McKibbin 1970 (Oligocene — Recent) and of the Mediterranean endemicsLithophyllum racemus (Lamarck) Foslie 1901 (Aquitanian — Recent) andLithothamnion valens Foslie 1909 (Priabonian — Recent) to clarify their paleobiogeography. It also illuminates the bionomy and paleoenvironments of benthic Mediterranean bottoms dominated by unattached corallines. The changes in species and morphologies in the coating sequence of rhodoliths, from nucleus to periphery, document sequential environmental changes.

Key words

Biostratigraphy Paleobiogeography Paleoecology Corallinaceae Taxonomy 

Implicazioni biostratigrafiche, paleobiogeografiche e paleoecologiche nelle revisioni tassonomiche di Corallinaceae

Riassunto

Alcune specie fossili di Corallinaceae non genicolate sono sinonimi di specie viventi. Queste sinonimie permettono di utilizzare la distribuzione stratigrafica diPhymatolithon calcareum (Pallas) Adey and McKibbin 1970 (Oligocene-Recente), come anche diLithophyllum racemus (Lamarck) Foslie 1901 (Aquitaniano-Recente) eLithothamnion valens Foslie 1909 (Priaboniano-Recente), due specie endemiche del Mediterraneo, per chiarirne l’evoluzione paleobiogeografica. Queste sinonimie tra specie fossili ed attuali e quindi il significato attribuibile ai fossili nell’ambito della bionomia bentonica mediterranea (almeno dal tardo Miocene) consentono di ricostruire con maggior dettaglio alcuni paleoambienti di fondo mobile dominati da queste corallinacee. In presenza di rodoliti multispecifiche, è possibile tracciare l’evoluzione del paleoambiente attraverso la sequenza di accrescimento delle rodoliti stesse.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey W.H., 1979.Crustose coralline algae as microenvironmental indicators in the Tertiary. In:J. Gray, A.J. Boucot (eds.),Historical Biogeography, Plate Tectonics and the Changing Environment. Oregon State Univ. Press, Corvallis: 459–464.Google Scholar
  2. Adey W.H., McKibbin D., 1970.Studies on the maërl species Phymatolithon calcareum(Pallas) nov. comb. and Lithothamnion coralloidesCrouan in the Ria de Vigo. Botanica Marina, 13: 100–106.CrossRefGoogle Scholar
  3. Aguirre J., Braga J.C., Martín J.M., 1993.Algal nodules in the Upper Pliocene deposits of the coast of Cadiz (S Spain). In:F. Barattolo, P. De Castro, M. Parente (eds.),Studies on Ecology and Paleoecology of Benthic Communities. Boll. Soc. Paleont. Ital., Spec. vol. 1:1–7.Google Scholar
  4. Basso D., 1998.Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeogr., Palaeoclimatol., Palaeoecol., 137: 173–187.CrossRefGoogle Scholar
  5. Basso D., Fravega P., Vannucci G., 1996.Fossil and living corallinaceans related to the mediterranean endemic species Lithophyllum racemus (Lamarck)Foslie. Facies, 35: 275–292.CrossRefGoogle Scholar
  6. Basso D., Fravega P., Vannucci G., 1997.The taxonomy of Lithothamnion ramosissimumGümbel (non Reuss) Conti and Lithothamnion operculatumConti (Rhodophyta, Corallinaceae). Facies, 37: 167–182.CrossRefGoogle Scholar
  7. Basso D., Fravega P., Piazza M., Vannucci G., 1998.Revision and re-documentation of M. Airoldi’s species of Mesophyllumfrom the Tertiary Piedmont Basin (NW Italy). Riv. Ital. Paleont. Strat., 104 (1): 85–94.Google Scholar
  8. Bosence D.W.J., 1983a.The Occurrence and Ecology of Recent Rhodoliths — A review. In:T.M. Peryt (ed.), Coated Grains. Springer-Verlag, Berlin: 225–242.Google Scholar
  9. Bosence D.W.J., 1983b.Coralline algal reef frameworks. J. Geol. Soc. London, 140: 365–376.CrossRefGoogle Scholar
  10. Bosence D.W.J., 1983c.Coralline Algae from the Miocene of Malta. Palaeontology, 26 (1): 147–173.Google Scholar
  11. Bosence D.W.J., 1985.The «Coralligène» of the Mediterranean — a Recent Analog for the Tertiary Coralline Algal Limestones. In:D.F. Toomey, M.H. Nitecki (eds.),Paleoalgology: Contemporary Research and Applications. Springer-Verlag, Berlin: 216–225.Google Scholar
  12. Bosence D.W.J., 1991.Coralline Algae: Mineralization, Taxonomy, and Palaeoecology. In:R. Riding (ed.),Calcareous Algae and Stromatolites. Springer-Verlag, Berlin: 98–113.Google Scholar
  13. Bosence D.W.J., Allison P.A., 1995.A review of marine palaeoenvironmental analysis from fossils. In:D.W.J. Bosence, P.A. Allison (eds.),Marine Palaeoenvironmental Analysis from Fossils. Geol. Soc. London, Spec. Publ., 83: 1–6.CrossRefGoogle Scholar
  14. Bosence D.W.J., Pedley H.M., 1982.Sedimentology and palaeoecology of Miocene coralline algal biostrome from the Maltese Islands. Palaeogeogr., Palaecoclimatol., Palaecoecol., 38: 9–43.CrossRefGoogle Scholar
  15. Braga J.C., Aguirre J., 1995.Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain. Rev. Palaeobot. Palinol., 86: 265–285.CrossRefGoogle Scholar
  16. Braga J.C., Martín J.M., 1988.Neogene coralline-algal growth-forms and their palaeonvironments in the Almanzora river valley (Almería, SE Spain). Palaeogeogr., Palaeoclimatol., Palaeoecol., 67: 285–303.CrossRefGoogle Scholar
  17. Braga J.C., Bosence D.W.J., Steneck R.S., 1993.New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology, 36 (3): 535–547.Google Scholar
  18. Carannante G., Esteban M., Milliman J.D., Simone L., 1988.Carbonate lithofacies as paleolatitude indicators. Sediment. Geol., 60: 333–346.CrossRefGoogle Scholar
  19. Civis J., Alonso Gavilan G., Gonzalez Delgado J.A., Braga J.C., 1994.Sédimentation carbonatée transgressive sur la bordure occidentale du couloir nord-bétique pendant le Tortonien supérieur (Fm Calcarenita de Niebla, SW de l’Espagne). Géol. Médit., XXI (1–2): 9–18.Google Scholar
  20. Conti S., 1946.Le Corallinacee del calcare miocenico (Leithakalk) del bacino di Vienna. Pubbl. Ist. Geol. Univ. Genova, s. A-Paleont., 2: 31–68.Google Scholar
  21. Conti S., 1950.Alghe Corallinacee fossili. Pubbl. Ist. Geol. Univ. Genova, s. A-Paleont., 4: 1–156.Google Scholar
  22. D’Atri A., Piazza M., 1988.Facies a Corallinacee del Pliocene di Masserano (Biellese). In:E. Robba (ed.),Atti del Quarto Simposio di Ecologia e Paleoecologia delle Comunità Bentoniche. Mus. Reg. Sci. Nat. Torino: 387–395.Google Scholar
  23. Foslie M., 1900.Five new calcareous algae. K. Norske Vidensk. Selsk. Skr., 3: 1–6.Google Scholar
  24. Foslie M., 1901.Revised systematical survey of the Melobesiae. K. Norske Vidensk. Selsk. Skr., 6: 1–24.Google Scholar
  25. Foslie M., 1903.The Lithothamnia of the Maldives and Laccadives. In:J.S. Gardiner (ed.),The Fauna and Geography of the Maldive and Laccadive Archipelagoes. Cambridge Univ. Press, Cambridge, 1: 460–471.Google Scholar
  26. Foslie M., 1909.Algologiske notiser. VI. K. Norske Vidensk. Selsk. Skr., 2: 1–63.Google Scholar
  27. Fravega P., Giammarino S., Vannucci G., 1984.Episodi ad «Algal balls» e loro significato al passaggio Arenarie di Serravalle-Marne di S. Agata Fossili a Nord di Gavi (Bacino Terziario del Piemonte). Atti Soc. Tosc. Sc. Nat., Mem., s. A, 91: 1–20.Google Scholar
  28. Fravega P., Piazza M., Vannucci G., 1993.Three new species of coralline algae (genera Lithothamnionand Lithophyllum)from the Tertiary Piedmont Basin. Riv. Ital. Paleont. Strat., 98 (4): 453–466.Google Scholar
  29. Fravega P., Giammarino S., Piazza M., Vannucci G., 1997.The rhodolith pavement of Punta Guitja section, Lampedusa Formation (Upper Miocene - Island of Lampedusa, Pelagian Block). Boll. Soc. Paleont. Ital., 36 (3): 413–416.Google Scholar
  30. Furnari G., Cormaci M., Alongi G., 1996. Lithophyllum frondosum(Dufour) comb. nov. (Corallinaceae, Rhodophyta): the species to which Mediterranean «Pseudolithophyllum expansum»should be referred. Eur. J. Phycol., 31: 117–122.CrossRefGoogle Scholar
  31. Heydrich F., 1897.Corallinaceae, inbesondere Melobesieae. Ber. Deutsch. Bot. Ges., 15 (1): 34–70.Google Scholar
  32. Irvine L.M., Chamberlain Y.M., 1994.Seaweeds of the British Isles, 1, Rhodophyta, part 2B Corallinales, Hildebrandiales. HMSO, London.Google Scholar
  33. Lemoine M. (Mme P.), 1911.Structure anatomique des Mélobésiées. Ann. Inst. Océanogr., Monaco, 2 (1): 1–215.Google Scholar
  34. Lemoine M. (Mme P.), 1917.Contributions à l’étude des Corallinacées fossiles. III. Corallinacées fossiles de la Martinique. Bull. Soc. Géol. France, s. 4, 17: 256–279.Google Scholar
  35. Lemoine M. (Mme P.), 1928.Un nouveau genre de Mélobésiées: Mesophyllum. Bull. Soc. Bot. France, t. 75, s. 5, 4: 251–254.Google Scholar
  36. Lemoine M. (Mme P.), 1929.Contributions à l’étude des Corallinacées fossiles. X. Les Mélobésiées recueillies par M. Viennot dans le Miocène de la province de Grenade. Bull. Soc. Géol. France, s. 4, 29: 263–272.Google Scholar
  37. Martín J.M., Braga J.C., Konishi K., Pigram C.J., 1993.29. A model for the development of rhodoliths on platforms influenced by storms: middle Miocene carbonates of the Marion Plateau (Northeastern Australia). In:J.A. McKenzie, P.J. Davies, A. Palmer-Julsonet al. (eds.),Proceedings of the Ocean Drilling Program, Scientific Results. 113: 455–460.Google Scholar
  38. Masaki T., 1968.Studies on the Melobesioideae of Japan. Mem. Fac. Fisheries Hokkaido Univ., 16 (1/2): 1–80.Google Scholar
  39. Maslov V.P., 1962.Fossil red algae of USSR and their relationships with the facies. USSR Academy of Sciences. Trudieri Geol. Inst., 53: 1–222 (in Russian).Google Scholar
  40. Mastrorilli V.I., 1968.Nuovo contributo allo studio delle Corallinaceae dell’Oligocene Ligure-Piemontese: i reperti della tavoletta Ponzone. Atti Ist. Geol. Univ. Genova, 5 (2): 153–406.Google Scholar
  41. Moussavian E., 1984.Upper Cretaceous and Paleogene Pebbles of the Angerberg Beds (Late Oligocene, Unterinntal, Northern Alps). Facies, 10: 1–86.CrossRefGoogle Scholar
  42. Orszag-Sperber F., Poignant A.-F., Poisson A., 1977.Paleogeographic significance of Rhodolites: some examples from the Miocene of France and Turkey. In:E. Flügel (ed.),Fossil Algae. Springer-Verlag, Berlin: 286–294.Google Scholar
  43. Pérès J.-M., 1967.Les biocoenoses benthiques dans le Système Phytal. Rec. Trav. St. Mar. Endoume Bull., 42 (58): 1–113.Google Scholar
  44. Pérès J.-M., 1982.Structure and dynamics of assemblages in the benthal. In:O. Kinne (ed.),Marine Ecology. John Wiley & Sons Ltd, New York, 5 (1): 119–581.Google Scholar
  45. Pérès J.-M., Picard J., 1964.Nouveau manuel de bionomie benthique de la Mer Méditerranée. Rec. Trav. St. Mar. Endoume Bull., 31: 1–137.Google Scholar
  46. Perrin C., Bosence D.W.J., Rosen B., 1995.Quantitative approaches to palaeozonation and palaeobathymetry of corals and coralline algae in Cenozoic reefs. In:D.W.J. Bosence, P.A. Allison (eds.),Marine Palaeoenvironmental Analysis from Fossils. Geol. Soc. London, Spec. Publ., 83: 181–230.CrossRefGoogle Scholar
  47. Piller W.E., Rasser M., 1996.Rhodolith formation induced by reeferosion in the Red Sea, Egypt. Coral Reef, 15: 191–198.Google Scholar
  48. Schalekova A., 1973.Oberbadenische Corallinaceen aus dem Steinbruch Rohoznik-Vajar an dem Westhang der Kleinen Karpaten. Acta Geol. Geogr. Univ. Comenianae, Geol., 26: 211–221.Google Scholar
  49. Segonzac G., 1972.Nouvelles espèces de Corallinacées (Algues Calcaires) du Néogène d’Espagne. Bull. Soc. Hist. Nat. Toulouse, 108 (1–2): 280–286.Google Scholar
  50. Segonzac G., 1984.Algues calcaires actuelles (Rhodophycées, Chlorophycées) récoltées dans l’Océan Indien occidental. Tethys, 11 (2): 93–104.Google Scholar
  51. Simone L., Carannante G., 1988.The fate of foramol («temperate-type») carbonate platforms. Sedimentary Geology, 60 (1–4): 347–354.CrossRefGoogle Scholar
  52. Unger F., 1858.Beiträge zur naheren Kenntnis des Leithakalkes. Densk. Kaiser. Akad. Wissen., Mat. Nat. Classe, 14: 13–38.Google Scholar
  53. Vannucci G., Piazza M., Fravega P., Chiesa I., 1994.Calcareous Rhodophyceae from the «Astian facies» (Pliocene), Valle San Bartolomeo, Alessandria, NW Italy. In:r. Matteucci, M.G. Carboni, J.S. Pignatti (eds.),Studies on Ecology and Paleoecology of Benthic Communities. Boll. Soc. Paleont. Ital., Spec. vol. 2: 351–364.Google Scholar
  54. Vannucci G., Piazza M., Fravega P., 1997.Occurrence of Phymatolithon calcareum(Pallas) Adey & McKibbin in the Late Miocene of Northwestern Italy. Boll. Soc. Paleont. Ital., 36 (3): 417–419.Google Scholar
  55. Weber-van Bosse A., Foslie M., 1904.The Corallinaceae of the Siboga-Expedition. Siboga-Expeditie, E.J. Brill, Leyden.Google Scholar
  56. Wilks K.M., Woelkerling W.J., 1994.An account of Southern Australian Species of Phymatolithon(Corallinaceae, Rhodophyta) with comments on Leptophytum. Aust. Syst. Bot., 7: 183–223.CrossRefGoogle Scholar
  57. Woelkerling W.J., 1983.A taxonomic reassessment of Lithothamnium(Corallinaceae, Rhodophyta) based on studies of R. A. Philippi’s original collections. Br. Phycol. J., 18: 165–197.CrossRefGoogle Scholar
  58. Woelkerling W.J., Campbell S.J., 1992.An account of southern Australian species of Lithophyllum(Corallinaceae, Rhodophyta). Bull. British Mus. (Natural History), Botany Series, 22: 1–107.Google Scholar
  59. Woelkerling W.J., Harvey A., 1993.An account of southern Australian species of Mesophyllum(Corallinaceae, Rhodophyta). Aust. Syst. Bot., 6: 571–637.CrossRefGoogle Scholar
  60. Woelkerling W.J., Penrose D., Chamberlain Y.M., 1993.A reassessment of type collections of non-geniculate Corallinaceae (Corallinales, Rhodophyta) described by C. Montagne and L. Dufour, and of Melobesia brassica-floridaHarvey. Phycologia, 32 (5): 323–331.Google Scholar
  61. Womersley H.B.S., 1996.The marine benthic flora of Southern Australia. Rhodophyta — Part IIIB. Flora of Australia supplementary series, Australian Biological Resources Study, Canberra.Google Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • Daniela Basso
    • 1
  • Patrizia Favega
    • 2
  • Michele Piazza
    • 2
  • Grazia Vannucci
    • 2
  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di MilanoMilano
  2. 2.Dipartimento di Scienze della TerraUniversità degli Studi di GenovaGenova

Personalised recommendations