International Journal of Salt Lake Research

, Volume 1, Issue 2, pp 77–89 | Cite as

On the red coloration of saltern crystallizer ponds

  • Aharon Oren
  • Noga Stambler
  • Zvy Dubinsky
Article

Abstract

To assess, respectively, the contribution of red bacteria of theHalobacterium-Haloferax-Haloarcula group and of the β-carotene-rich green algaDunaliella salina to the red colour of saltern crystallizer ponds, we studied the optical properties of the brines of NaCl-saturated saltern ponds in Eilat, Israel, and quantified the pigments present in their biota. The absorption spectrum of the brines, as measured using the opal glass method to reduce the interference by scattering, or using an integrating sphere, nearly corresponded to thein vivo absorption spectrum of bacterioruberin-containing red archaeobacteria. However, extracts of the microbial community in organic solvents were dominated by β-carotene, a pigment occurring in high concentrations in theDunaliella cells present, and bacterioruberin contributed only between 13 and 28 per cent of the total visible light absorption by the extracts. The apparent discrepancy between these results can be explained by the very small in vivo optical cross-section of β-carotene, which is densely packed in globules inside theD. salina cells.

Key Words

solar salterns Halobacterium Dunaliella bacterioruberin β-carotene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aasen, A.J., Eimhjellen, K.E. and Liaaen-Jensen, S. 1969. An extreme source of β-carotene.Acta Chemica Scandinavica 23: 2544–2545.PubMedGoogle Scholar
  2. Baas-Becking, L.G.M., 1931. Historical notes on salt and salt-manufacture.Scientific Monthly 32: 434–446.Google Scholar
  3. Ben-Amotz, A. and Avron, M., 1983. On the factors which determine massive β-carotene accumulation in the halotolerant algaDunaliella bardawil.Plant Physiology 72: 593–597.PubMedGoogle Scholar
  4. Ben-Amotz, A. and Avron, M., 1989. The biotechnology of mass culturingDunaliella for products of commercial interest. In: R.C. Cresswell, T.A.V. Rees and N. Shah (Eds)Algal and Cyanobacterial Biotechnology. pp. 91–114. Longman Scientific and Technical Press, Harlow, U.K.Google Scholar
  5. Ben-Amotz, A., Shaish, A. and Avron, M., 1989. Mode of action of the massively accumulated β-carotene ofDunaliella bardawil in protecting the alga against damage by excess irradiation.Plant Physiology 91: 1040–1043.PubMedGoogle Scholar
  6. Borowitzka, L.J., 1981. The microflora. Adaptation to life in extremely saline lakes.Hydrobiologia 81: 33–46.CrossRefGoogle Scholar
  7. Davis, J.S., 1974. Importance of microorganisms in solar salt production. In: A.H. Coogan (Ed.)Fourth Symposium on Salt. Vol. 2. pp. 369–372. Northern Ohio Geological Society, Cleveland.Google Scholar
  8. Dubinsky, Z., 1992. The functional and optical absorption cross-sections of phytoplankton photosynthesis. In: P.G. Falkowski and A.D. Woodhead (Eds)Primary Productivity and Biogeochemical Cycles in the Sea. pp. 31–45. Plenum Press, New York.Google Scholar
  9. Dundas, I.E.D., 1977. Physiology of the Halobacteriaceae. In: A.H. Rose and D.W. Tempest (Eds)Advances in Microbial Physiology. Vol. 15. pp. 85–120. Academic Press, London.Google Scholar
  10. Dundas, I.D. and Larsen, H., 1962. The physiological role of the carotenoid pigments ofHalobacterium salinarium.Archiv für Mikrobiologie 44: 233–239.CrossRefGoogle Scholar
  11. Gochnauer, M.B., Kushwaha, S.C., Kates, M. and Kushner, D.J., 1972. Nutritional control of pigment and isoprenoid compound formation in extremely halophilic bacteria.Archiv für Mikrobiologie 84: 339–349.CrossRefGoogle Scholar
  12. Imhoff, J.F., Sahl, H.G., Soliman, G.S.H. and Trüper, H.G., 1979. The Wadi Natrun: chemical and microbial mass developments in alkaline brines of eutrophic desert lakes.Geomicrobiology Journal 1: 219–234.CrossRefGoogle Scholar
  13. Jannasch, H.W., 1957. Die bakterielle Rotfärbung der Salzseen des Wadi Natrun (Ägypten).Archiv für Hydrobiologie 53: 425–433.Google Scholar
  14. Javor, B.J., 1983a. Planktonic standing crop and nutrients in a saltern ecosystem.Limnology and Oceanography 28: 153–159.Google Scholar
  15. Javor, B.J., 1983b. Nutrients and ecology of the Western Salt and Exportadora de Sal saltern brines. In: B.C. Schreiber and H.L. Harner (Eds)Proceedings of the Sixth International Symposium on Salt. Vol 1. pp. 195–205. The Salt Institute, Toronto.Google Scholar
  16. Javor, B., 1989.Hypersaline Environments. Microbiology and Biogeochemistry. Springer-Verlag, Berlin.Google Scholar
  17. Kushwaha, S.C. and Kates, M., 1979. Effect of glycerol on carotenogenesis in the extreme halophile,Halobacterium cutirubrum.Canadian Journal of Microbiology 25: 1288–1291.PubMedCrossRefGoogle Scholar
  18. Larsen, H. 1980. Ecology of hypersaline environments. In: A. Nissenbaum (Ed.)Hypersaline Brines and Evaporitic Environments. pp. 23–29. Elsevier, Amsterdam.CrossRefGoogle Scholar
  19. Lers, A., Biener, Y. and Zamir, A., 1989. Photoinduction of massive β-carotene accumulation by the algaDunaliella bardawil.Plant Physiology 93: 389–395.Google Scholar
  20. Nelis, H.J. and De Leenheer, A.P., 1991. Microbial sources of carotenoid pigments used in foods and feeds.Journal of Applied Bacteriology 70: 181–191.Google Scholar
  21. Oren, A., 1989. A method for the microscopic enumeration ofHalobacterium cells.Journal of Microbiological Methods 10: 183–187.CrossRefGoogle Scholar
  22. Oren, A., 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts.FEMS Microbiology Ecology 73: 41–48.CrossRefGoogle Scholar
  23. Oren, A. and Bekhor, D., 1989. Tolerance of extremely halophilic archaebacteria towards bromide.Current Microbiology 19: 371–374.CrossRefGoogle Scholar
  24. Shibata, K., Benson, A.A. and Calvin, M., 1954. The absorption spectra of suspensions of living micro-organisms.Biochimica et Biophysica Acta 15: 461–470.PubMedCrossRefGoogle Scholar
  25. Tindall, B.J. and Trüper, H.G., 1986. Ecophysiology of the aerobic halophilic archaebacteria.Systematic and Applied Microbiology 7: 202–212.Google Scholar
  26. Wu, L., Chow, K. and Mark, K., 1983. The role of pigments inHalobacterium cutirubrum against UV irradiation.Microbios Letters 24: 85–90.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Aharon Oren
    • 1
    • 2
  • Noga Stambler
    • 3
  • Zvy Dubinsky
    • 3
  1. 1.Division of Microbial and Molecular Ecology, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.The Moshe Shilo Research Center for Marine BiogeochemistryThe Herbrew University of JerusalemJerusalemIsrael
  3. 3.Life Sciences DepartmentBar-Ilan UniversityRamat GanIsrael

Personalised recommendations