Economic Botany

, Volume 18, Issue 1, pp 34–56 | Cite as

Carbon dioxide enrichment of greenhouse atmospheres for food crop production

  • S. H. Wittwer
  • W. M. Robb


Carbon Dioxide Economic Botany Carbon Dioxide Concentration Grand Rapid Carbon Dioxide Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Anonymous. 1960. The safety limits of hazardous chemicals. Safety Maintenance Magazine, pp. 37-39. (December).Google Scholar
  2. 2.
    -. 1962. Dutch now treat 4,000 acres of lettuce with CO2, The Grower, Dec. 8, pp. 904–906.Google Scholar
  3. 3.
    Bacher, T. O. 1928. The Effect of Ammonia in the Air on the Growth of the Plant. Cornell University, M.S. Thesis. 36 pp.Google Scholar
  4. 4.
    Blackman, F. F. 1905. Optima and limiting factors. Ann. Bot.19: 281–295.Google Scholar
  5. 5.
    — and G. L. C. Matthaei. 1905. Experimental researches in vegetable assimilation and respiration. IV. A quantitative study of carbon dioxide assimilation and leaf temperature in natural illumination. Roy. Soc. London Proc. (B)76: 402–460.Google Scholar
  6. 6.
    Böhning, R. H. and C. A. Burnside. 1956. The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants. Amer. Jour. Bot.43: 557–561.CrossRefGoogle Scholar
  7. 7.
    Bolas, B. D. and F. Y. Henderson. 1928. The effect of increased atmospheric carbon dioxide on the growth of plants. Ann. Bot.62: 509–523.Google Scholar
  8. 8.
    — and R. Melville. 1935. The effect on the tomato plant of carbon dioxide produced by combustion. Ann. Appl. Biol.22: 1–15.CrossRefGoogle Scholar
  9. 9.
    Bonde, E. K. 1952. The influence of carbon dioxide concentration upon the rate of photosynthesis inSinapsis alba. Physiol. Plantarum5: 298–304.CrossRefGoogle Scholar
  10. 10.
    Briejer, C. J. 1959. Een verlaten goudmijn: koolzuurbemesting. Meded. Dir. Tuinb.22: 670–674.Google Scholar
  11. 11.
    Brown, H. T. and F. Escombe. 1902. The influence of varying amounts of carbon dioxide in the air on the photosynthetic process of leaves and on the mode of growth of plants. Proc. Royal Soc.70: 397–413.CrossRefGoogle Scholar
  12. 12.
    Carr, D. J. 1961. Chemical influences of the environment. In: Encyclopedia of Plant Physiol. XVI, pp. 737–794. W. Ruhland, ed. Springer-Verlag, Berlin.Google Scholar
  13. 13.
    Cesnokov, V. A. 1955. The effect of CO2 concentration on photosynthesis and yield. (Russian). Trud. Inst. Fiziol. Rast. Timiryazeva10: 81–90.Google Scholar
  14. 14.
    Chapman, H. W. and W. E. Loomis. 1953. Photosynthesis in the potato under field conditions. Plant Physiol.28: 703–716.PubMedGoogle Scholar
  15. 15.
    —, L. S. Gleason and W. E. Loomis. 1954. The carbon dioxide content of field air. Plant Physiol.29: 500–503.PubMedGoogle Scholar
  16. 16.
    Cummings, M. B. and C. H. Jones. 1918. The aerial fertilization of plants with carbon dioxide. Vermont Sta. Bul. 211.Google Scholar
  17. 17.
    Curtis, O. F. and D. G. Clark. 1950. An Introduction to Plant Physiology. McGraw-Hill Book Co., Inc., N.Y. pp. 29–39, 218-219.Google Scholar
  18. 18.
    Daunicht, H. J. 1960. Untersuchungen zur Wirkung des Kohlendioxyd-Angebots auf den Ertag von Treibgemüsen unter besonderer Berückischtigungen der Hydrokulture. Dissertation aus dem Institut für Gemüsebau der Technischen Universitat Berlin. 56 pp.Google Scholar
  19. 19.
    — 1963. Versuche zur Wirkung der CO2 Konzentration auf die Stoffproduction. Proc. 16th Internat’l Hort. Congr.2: 408–412.Google Scholar
  20. 20.
    — 1963. Ergibnisse über die CO2— Versorgung bei Hydrokultur. Proc. 16th Internat’l Hort. Congr.2: 413–417.Google Scholar
  21. 21.
    Demoussy, E. 1902-1904. Sur la vegetation dans des atmospheres riches en acide carbonique. Comptes Rendus Acad. Sci. Paris136: 325–328;138: 291-293;139: 883-885.Google Scholar
  22. 22.
    Dunn, S. and F. W. Went. 1959. Influence of fluorescent light quality on growth and photosynthesis of tomato. Lloydia22: 302–324.Google Scholar
  23. 23.
    Fischer, H. 1921. Kritisches zur Kohlensüuredüngung. Angewandte Botanik.3: 129–144.Google Scholar
  24. 24.
    Fizzell, J. A. 1962. Carbon dioxide in the greenhouse atmosphere. Illinois State Florist Assoc. Bul.225: 5–6.Google Scholar
  25. 25.
    Fuller, H. J. 1948. Carbon dioxide concentrations of the atmosphere above Illinois forest and grassland. The American Midland Naturalist39: 247–249.CrossRefGoogle Scholar
  26. 26.
    Gaastra, P. 1959. Phytosynthesis of crop plants as influenced by light, carbon dioxide temperature, and stomatal diffusion resistance. Meded. Landbou. Wageningen59: 1–68.Google Scholar
  27. 27.
    — 1962. Photosynthesis of leaves and field crops. Netherlands Jour. Agric. Sci.10: 311–324.Google Scholar
  28. 28.
    — 1963. Climatie control of photosynthesis and respiration.In: Environmental Control of Plant Growth. L. T. Evans (ed.). pp. 113–140. Academic Press, N. Y.Google Scholar
  29. 29.
    Gabrielsen, E. K. 1948. Threshold value of carbon dioxide concentration in photosynthesis of foliage leaves. Nature161: 138.CrossRefPubMedGoogle Scholar
  30. 30.
    — 1949. Photosynthesis in leaves at very low carbon dioxide concentrations. Nature163: 359.CrossRefGoogle Scholar
  31. 31.
    Gardner, R. 1963. Response differs with variety. The Grower.59: 813–814.Google Scholar
  32. 32.
    Goldsberry, K. L. and W. D. Holley. 1960. Carbon dioxide in the greenhouse atmosphere. Colorado Flower Growers Assoc., Inc. Bul. 119.Google Scholar
  33. 33.
    -. 1961. Effects of carbon dioxide on carnation growth. Colorado Flower Growers Assoc., Inc. Bul. 138.Google Scholar
  34. 34.
    - and W. D. Holley. 1962. Carbon dioxide research. Roses Inc., Bul., Nov. pp. 15-18.Google Scholar
  35. 35.
    Groenewegen, J. H. and R. T. C. Naaldwijk. 1963. CO2 bij tomaten. De Tuinderij. April 2, pp. 395-398.Google Scholar
  36. 36.
    Harder, R. 1921. Kritische Versuche zu Blackmans Theorie der “begrenzenden Faktoren” bei der Kohlensäureassimilation. Jahrib. wiss, Bot.60: 531–571.Google Scholar
  37. 37.
    — et al. 1931. Beobachtungen über das Pflanzenwachstum und die Kohlensäureassimilation bei Kohlensäuredüngung und nächtlicher Zusatzbeleuchtung. Gartenbauwissenschaft5: 389–428.Google Scholar
  38. 38.
    Heinicke, A. J. and M. B. Hoffman. 1933. The rate of photosynthesis of apple leaves under natural conditions. Part I. Cornell Univ. Agr. Exp. Sta. Bul. 577, 32 pp.Google Scholar
  39. 39.
    Hesketh, J. D. and D. N. Moss. 1963. Variation in response of photosynthesis to light. Crop Science3: 107–110.Google Scholar
  40. 40.
    Hoover, W. H., E. S. Johnson and F. S. Brackett. 1933. Carbon dioxide assimilation in a higher plant. Smithsonian Misc. Publ.87 (16): 1–19.Google Scholar
  41. 41.
    Hopen, H. J. and S. K. Ries. 1962. The mutually compensating effect of carbon dioxide concentrations and light intensities on the growth ofCucumis sativas L. Proc. Amer. Soc. Hort. Sci.81: 358–364.Google Scholar
  42. 42.
    — and S. K. Ries. 1962. Atmospheric carbon dioxide levels over mineral and muck soils. Proc. Amer. Soc. Hort. Sci.81: 365–367.Google Scholar
  43. 43.
    Inone, E. 1963. The environment of plant surfaces.In: Environmental Control of Plant Growth. L. T. Evans (ed.). pp. 23–32. Academic Press, N.Y.Google Scholar
  44. 44.
    Johansson, E. 1934. Kolsyrehalt i växthusluft. Medd. Alnarp Tradg. Försöksverks35: 13–20.Google Scholar
  45. 45.
    — 1934. Kolsyrebestämnigar i drivbäkar vid Alnarp 1933. Medd. Alnarp Trädg. Försöksverks35: 1–12.Google Scholar
  46. 46.
    Kilbinger, A. 1953. Untersuchungen über Bodenburtige Kohlensäure mit dem “Mikrogas” analyangerät Wösthoff. Schriftenreihe der Kohlenstoffbiologischen Forschungs-station E.V. Essen-Bredeney. pp. 40.Google Scholar
  47. 47.
    — 1955. Kohlensäure-ein Lebensstoff. Landbau-Verlag, München. 52 pp.Google Scholar
  48. 48.
    Krasinskij, N. P. 1955. The cultivation of plants in artificial light under glass, and the increase in the effectiveness of illumination by CO2 assimilation. (Rustian). Trud. Inst. Fiziol. Rast. Timiryaseva10: 64–72.Google Scholar
  49. 49.
    Kreusler, U. 1885. Uber eine Methode zur Beobachtung der Assimilation und Atmung der Pflanzen und uber einige dieser Vorgänge und beeinflussenden Momente. Landw. Jahrb.14: 913–965.Google Scholar
  50. 50.
    Kuiper, P. J. C. 1961. The effects of environmental factors on the transpiration of leaves, with special reference to stomatal light response. Meded. Landbou. Wageningen61: 1–49.Google Scholar
  51. 51.
    Lake, J. V. 1963. Carbon dioxide is a basic need of plants. The Grower59 (14). April 6, pp. 687–688.Google Scholar
  52. 52.
    — 1963. Try CO2 for the summer crop. The Grower59 (15). April 13, pp. 765–766.Google Scholar
  53. 53.
    Lawrence, W. J. C. 1955. Control of Glasshouse Climate. In: Proc. 14th Internat’l Hort. Congr. Vol. I: 573–580. Veenman and Zonen, Wageningen, Netherlands.Google Scholar
  54. 54.
    Leontovitch, C. 1956. La fumure des plantes au moyen de l’acide carbonique. Landbouwkundig Tijdschrift voor Belgisch Congo47: 1633–1637.Google Scholar
  55. 55.
    Loomis, W. E. 1960. Historical introduction. In: Encyclopedia of Plant Physiol. V: 85–114. W. Ruhland (ed.). Springer- Verlag, Berlin.Google Scholar
  56. 56.
    Los, G. J. 1962. Temperatuur en koolzuurgas in kassen. Meded, Dir. Tuinb.25: 171–175.Google Scholar
  57. 57.
    -. 1963. The carbon dioxide content of greenhouse air. Proc. 16th Internat’l Hort. Congr. 4: (In Press).Google Scholar
  58. 58.
    Lundegardh, H. 1924. Der Kreislauf der Kohlensäure in der Natur. G. Fischer- Verlag, Jena. 308 pp.Google Scholar
  59. 59.
    Mann, M. and M. Schanderl. 1934. Studien uber Kohlensäuredüngung in Gewächshäusern. Gartenbauwissenschaft8: 497–514.Google Scholar
  60. 60.
    Mauri, N. and G. Mauri. 1939. Essais d’utilisation pratique du CO2 en horticulture. Rev. Hort. Agric. Afr. N.,43: 193–205.Google Scholar
  61. 61.
    Meyer, B. S., D. B. Anderson and R. H. Bohning. 1960. Introduction to Plant Physiology, pp. 214–215. D. Van Nostrand Co., Inc., N.Y.Google Scholar
  62. 62.
    Miller, E. C. 1938. Plant Physiology, pp. 585–587. McGraw-Hill Book Co., Inc., N.Y.Google Scholar
  63. 63.
    Molliard, M. 1938. La fumure carbonique. Comptes Rendus Acad. Agric. France24: 400–404.Google Scholar
  64. 64.
    Mortimer, D. C. 1959. Some short term effects of increased carbon dioxide concentration on photosynthetic assimilation in leaves. Canad. Jour. Bot.37: 1191–1201.CrossRefGoogle Scholar
  65. 65.
    Moschini, E. 1960. Richerehe sulla concimazione carbonica del pomodoro coltivato in serra. Riv. Ortoflorofruttic, ital.,44: 436–458.Google Scholar
  66. 66.
    Moss, D. N. 1962. The limiting carbon dioxide concentration for photosynthesis. Nature193: 587.PubMedCrossRefGoogle Scholar
  67. 67.
    — and S. L. Rawlins. 1963. Concentration of carbon dioxide inside leaves. Nature197: 1320–1321.CrossRefGoogle Scholar
  68. 68.
    —, R. B. Musgrave and E. R. Lemon. 1961. Photosynthesis under field conditions. III. Some effects of light, carbon dioxide, temperature and soil moisture on photosynthesis, respiration and transpiration of corn. Crop Sci.1: 83–87.Google Scholar
  69. 69.
    Musgrave, R. B. 1963. Carbon dioxide in crop environments. Agron. Jour.55: 31.Google Scholar
  70. 70.
    Norman, A. G. 1962. The uniqueness of plants. Amer. Sci.50: 436–449.Google Scholar
  71. 71.
    Ozerov, G. V. 1936. Influence of carbon dioxide on plant growth. (Russian, Eng. Sum.). Soviet Subtropics4 (20): 47–51.Google Scholar
  72. 72.
    Plass, G. N. 1959. Carbon dioxide and climate. Scientific American201: 41–45.PubMedCrossRefGoogle Scholar
  73. 73.
    Pritchard, G. G., W. J. Griffin and C. P. Whittingham. 1962. The effect of carbon dioxide concentration, light intensity and isonicotinyl hydrazide on the photosynthetie production of glycolic acid by chlorella. Jour. Exp. Bot.13: 176–184.CrossRefGoogle Scholar
  74. 74.
    Protasova, N. N. 1952. Raising seedlings in the greenhouse under varying light conditions. (Russian). Sad i Ogorod12: 49–54.Google Scholar
  75. 75.
    Protasova, A. F. and A. N. Moryganov. 1953. A trial on the electrical heating of frames. (Russian). Sad i Ogorod9: 35- 39.Google Scholar
  76. 76.
    Rabinowitch, E. I. 1951. Photosynthesis and Related Processes. Vol. II. Part 1. pp. 886–963. Interscience Publ., Inc., N.Y.Google Scholar
  77. 77.
    Rabinowitch, E. I. 1956. Photosynthesis and Related Processes. Vol. II. Part 2, pp. 1886–1901. Interscience Publ., Inc., N.Y.Google Scholar
  78. 78.
    Reid, M. E. 1930. Growth and nitrogen metabolism of squash seedlings. III. With respect to high and low carbohydrate synthesis. Amer. Jour. Bot.17: 579–601.CrossRefGoogle Scholar
  79. 79.
    Reinau, E. 1927. Praktische Kohlensäuredüngung in Gärtnerei und Landwirtschaft. Springer-Verlag, Berlin. 203 pp.Google Scholar
  80. 80.
    — 1955. Düngung mit dem Nährgas Kohlensäure? Der Deutsche Gartenbau6: 158–159.Google Scholar
  81. 81.
    Riedel, F. 1919. Die Ausnützung der Hochofenabgase zur Kohlensäuredüngung. Stahl. u. Eiscn39: 1497–1506.Google Scholar
  82. 82.
    Rogalev, I. E. 1953. The use of carbon dioxide as a fertilizer in greenhouses. (Russian). Sad i Ogorod10: 17–21.Google Scholar
  83. 83.
    Seidel, E. 1955. Anleitung zur CO2 begasung von Gewächshauskulturen. Der Deutsche Gartenbau6: 160–161.Google Scholar
  84. 84.
    Small, T. and H. L. White. 1930. Carbon dioxide in relation to greenhouse crops. IV. The effect on tomatoes of an enriched atmosphere maintained by means of a stove. Ann. Appl. Biol.17: 81–89.CrossRefGoogle Scholar
  85. 85.
    Smirnov, N. A. 1954. Fertilization of vegetables with carbon dioxide in glasshouses and frames. (Russian). Priroda43: 100–102.Google Scholar
  86. 86.
    Sparkes, E. D. 1962. Is carbon dioxide here to stay? The Grower57: 671–672.Google Scholar
  87. 87.
    Stålfelt, M. G. 1960. Das Kohlendioxyd. In: Encyclopedia of Plant Physiology, Vol. V, Part 2. The Assimilation of Carbon Dioxide, pp. 81–98. H. Ruhland (ed.). Springer-Verlag, Berlin.Google Scholar
  88. 88.
    Stender, J. A. 1951. Koolzuurdosering in diffusiedichte kas. Jaarversl. Inst. Tuinb. Tech. Wageningen, pp. 25–26.Google Scholar
  89. 89.
    Sudia, T. W., A. J. Linck and R. D. Durbin. 1960. The uptake of C14O2 by soybean roots. Minnesota Acad. Sci. Proc.28: 2–23.Google Scholar
  90. 90.
    Tagmaz’ian, I. A. 1958. The effect of a complex of nutritional factors on the growth, development, and productivity of tomatoes in greenhouses. Fiziol. Rast.5: 458–472. Plant Physiol. (Eng. Trans. Fiziol. East. 5: 477-481.Google Scholar
  91. 91.
    Tamm, E. und G. Krzysch. 1958. Beobachtungen des Wachstumsfaktors CO2 in der Vegetationszone. Zeitschrift für Ackerund Pflanzenbau107: 275–300.Google Scholar
  92. 92.
    — und G. Krzysch. 1960. Zum Verlauf des CO2-Gehaltes der Luft im Bereich landwirtschaftlicher Kulturpflanzenbestände. II. Beitrag. Zeitschrift für Ackerund Pflanzenbau112: 253–278.Google Scholar
  93. 93.
    — und G. Krzysch. 1960. Zum Verlauf des CO2-Gehaltes der Luft im Bereich landwirtschaftlicher Kulturpflanzenbestände. III. Beitrag. Zeitschrift für Acker-und Pflanzenbau112: 377–398.Google Scholar
  94. 94.
    Teubner, F. G., S. H. Wittwer, R. S. Lindstrom, and H. Archer. 1963. Design and calibration of a portable spectroradiometer for the visible range (400-700mu). Proc. Amer. Soc. Hort. Sci.82: 619–630.Google Scholar
  95. 95.
    Thimann, K. V. Research on plant physiology in the tropics. In: The Association for Tropical Biology, Bul. No. 1, Proc. of the Neotropical Botany Conf., Imperial College of Tropical Agri., Trinidad, July 2-6, 1962. pp. 86-89.Google Scholar
  96. 96.
    Thomas, M. D. and G. R. Hill. 1949. Photosysnthesis under field conditions.Photosynthesis in Plants, Plant Physiol. Monograph: 19–52. J. Frank and W. E. Loomis (eds.). Iowa State College Press, Ames, Iowa.Google Scholar
  97. 97.
    Tolbert, N. E. 1958. Secretion of glycolic acid by chloroplasts. In: Photochemical Apparatus, Its Structure and Function, pp. 271-275. Brookhaven Symposia in Biology No. 11.Google Scholar
  98. 98.
    van Berkel, N. 1962. CO2 on lettuce. Mimeograph. Profestation voor de groentenen Fruitteelt onder glas to Naaldwijk (Holland).Google Scholar
  99. 99.
    van Helmont, J. B. 1648. Ortus Medicinae. pp. 108-109. Amsterdam, Holland.Google Scholar
  100. 100.
    Verduin, J. 1952. Limiting factors. Science115: 23.CrossRefGoogle Scholar
  101. 101.
    — 1954. Carbon dioxide compensation point in photosynthesis. Science120: 75–76.PubMedCrossRefGoogle Scholar
  102. 102.
    — and W. E. Loomis. 1944. Absorption of carbon dioxide by maize. Plant Physiol.19: 278–293.PubMedGoogle Scholar
  103. 103.
    Voight, G. K. 1962. The Role of Carbon Dioxide in Soil. In: Tree Growth, T. T. Kozlowski (ed.). Ronald Press Co., N.Y. pp. 205–220.Google Scholar
  104. 104.
    Waggoner, P. E., D. M. Mosa and J. D. Hesketh. 1963. Radiation in the plant environment and photosynthesis. Agron. Jour.55: 36–38.Google Scholar
  105. 105.
    Wassink, E. C. 1959. Efficiency of light energy conversion in plant growth. Plant Physiol.34: 356–361.PubMedGoogle Scholar
  106. 106.
    Went, F. W. 1957. The Experimental Control of Plant Growth, pp. 99. Chronica Botanica Co., Waltham, Mass.Google Scholar
  107. 107.
    White, H. L. 1930. Carbon dioxide in relation to glasshouse crops. V. An analysis of the response of the tomato crop to an atmosphere enriched with carbon dioxide. Ann. Appl. Biol.17: (4): 755–766.CrossRefGoogle Scholar
  108. 108.
    Wilson, P. W. and C. E. Georgi. 1933. Methods for controlling the environment of greenhouse plants. Bot. Gaz.94: 346–363.CrossRefGoogle Scholar
  109. 109.
    Wittwer, S. H. 1949. Effect of fruit setting treatment, variety, and solar radiation on yield and fruit size of greenhouse tomatoes. Proc. Amer. Soc. Hort. Sci.53: 349–354.Google Scholar
  110. 110.
    -. 1960. Practices for increasing the yields of grenhouse tomatoes. Michigan Agr. Exp. Sta. Cir. Bul. 228.Google Scholar
  111. 111.
    - and W. Robb. 1962. Amerikkaanse CO2-ervaringen, de Tuinderij. No. 13 (June 26) pp. 604-605.Google Scholar
  112. 112.
    - and W. Robb. 1963. CO2 does increase yield and quality. Amer. Veg. Grower pp. 9-11 (November, 1963).Google Scholar
  113. 113.
    Zelitch, I. and P. E. Waggoner. 1962. Effect of chemical control of stomata on transpiration and photosynthesis. Proc. Nat’l Acad. Sci.48: 1101–1108.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1964

Authors and Affiliations

  • S. H. Wittwer
  • W. M. Robb
    • 1
  1. 1.Department of HorticultureMichigan State UniversityEast Lansing

Personalised recommendations