Advertisement

Chinese Science Bulletin

, Volume 49, Issue 1, pp 29–32 | Cite as

Viola baoshanensis, a plant that hyperaccumulates cadmium

  • Wei Liu
  • Wensheng Shu
  • Chongyu Lan
Articles

Abstract

This paper reports upon the finding ofViola baoshanensis, a cadmium (Cd) hyperaccumulator through field survey and greenhouse experiments. Average Cd concentration in the shoots and roots ofV. baoshanensis growing on Baoshan lead/zinc mine in Hunan Province, China, was 1168 and 981 mg/kg, respectively, varying from 456 to 2310 mg/kg in the shoots, and from 233 to 1846 mg/kg in the roots. The ratio of Cd concentration in shoot to root (DW) and that in plant shoots to total concentration in surface soil was 1.32 and 2.38, respectively. Under nutrient solution culture, biomass (DW) ofV. baoshanensis exposed to 0–30 mg/L Cd in solution increased with Cd supply increasing and reached a maximum at 30 mg/L Cd. Further increase of Cd concentration (40, 50 mg/L) in solution significantly reduced biomass. Cd concentration in the shoots was positively correlated with Cd concentration in the culture medium. Cd concentration in the shoots reached 4825 mg/kg at 50 mg/L Cd solution. The ratio of Cd concentration of shoots to roots inV. baoshanensis was greater than 1 at all Cd treatments, with an average of 1.67 (1.14–2.22). The results indicate thatV. baoshanensis is a Cd hyperaccumulator plant.

Keywords

Viola baoshanensis cadmium hyperaccumulator China phytoremediation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brooks, R. R., Lee, J., Reeves, R. D. et al., Detection of nickeliferous rocks by analysis of herbarium species of indicator plants, Journal of Geochemical Exploration, 1977, 7: 49–57.CrossRefGoogle Scholar
  2. 2.
    Baker, A. J. M., Brooks, R. R., Pease, A. J. et al., Study on copper and cobalt tolerance in three closely related taxa within the genusSilence L. (Caryophyllaceae) from Zaire, Plant and Soil, 1983, 73: 377–385.CrossRefGoogle Scholar
  3. 3.
    Baker, A. J. M., Brooks, R. R., Terrestrial higher plants which hyperaccumulate elements—A review of their distribution, ecology and phytochemistry, Biorecovery, 1989, 1: 81–126.Google Scholar
  4. 4.
    Brooks, R. R., Plants that Hyperaccumulate Heavy Metals, Wallingford: CAB Intenational, 1998, 379.Google Scholar
  5. 5.
    Salt, D. E., Blaylock, M., Kumar, N. P. B. A. et al., Phytoremediation: A noval strategy for the removal of toxic metals from the environmental using plant, Bio/Techenology, 1995, 13: 468–474.CrossRefGoogle Scholar
  6. 6.
    Robinson, B. H., Brooks, R. R., Kirkman, J. H. et al., The nickel hyperaccumulator plantAlyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel, Journal of Geochemical Exploration, 1997, 59: 75–86.CrossRefGoogle Scholar
  7. 7.
    Baker, A. J. M., McGrath, S. P., Reeves, R. D. et al., Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils, Phytoremediation of Contaminated Soil and Water (eds. Terry, N. and Banuelos, G.,), Florida: Lewis Publishers, 2000, 85–107.Google Scholar
  8. 8.
    Dahmani-Müller, H., van Oort, F., Balabane, M., Metal extraction byArabidopsis halleri grown on an unpolluted soil amended with various metal-bearing solids: A pot experiment, Environmental Pollution, 2001, 114(1): 77–84.CrossRefGoogle Scholar
  9. 9.
    Dahmani-Müller, H., van Oort, F., Gelie, B. et al., Strategies of heavy metal uptake by three plant species growing near a metal smelter, Environmental Pollution, 2000, 109: 231–238.CrossRefGoogle Scholar
  10. 10.
    Küpper, H., Lombi, E., Zhao, F. J. et al., Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulatorArabidopsis halleri, Planta, 2000, 212: 75–84.CrossRefGoogle Scholar
  11. 11.
    Kong Lingshao, Wang Meilin, Hu Yihui et al., Characteristics of plant communities and copper content in dominant plants in Hongtoushan copper ore region of Liaoning Province, Acta Botanica Sinica (in Chinese), 1984, 26(3): 302–311.Google Scholar
  12. 12.
    Hu Yihui, Kong Lingshao, Wang Meilin et al., The phytocommunity and the relations of the element contents between plants and soils at Qing Chenzi mining area of Liaoning Province, Acta Botanica Sinica (in Chinese), 1984, 26(4): 432–439.Google Scholar
  13. 13.
    Chen Tongbin, Wei Chaoyang, Huang Zechun et al., Arsenic hyperaccumulatorPteris Vittata L. and its arsenic accumulation, Chinese Science Bulletin, 2002, 47(11): 902–905.CrossRefGoogle Scholar
  14. 14.
    Chen Tongbin, Huang Zechun, Huang Yuying et al., Cellular distribution of arsenic and other elements in hyperaccumulatorPteris nervosa and their relations to arsenic accumulation, Chinese Science Bulletin, 2003, 48(15): 1586–1591.CrossRefGoogle Scholar
  15. 15.
    Yang Xiao’e, Long Xinxian, Ni Wuzhong et al.,Sedum alfredii H: A new Zn hyperaccumulating plant first found in China, Chinese Science Bulletin, 2002, 47(19): 1634–1637.CrossRefGoogle Scholar
  16. 16.
    Shu Wensheng, Liu Wei, Lan Chongyu,Viola. baoshanensis Shu, Liu et Lan, a new species ofViolaceae from Hunan Province, China, Acta Scientiarum Naturalium Universitatis Sunyatseni (in Chinese), 2003, 42 (3): 16–17.Google Scholar
  17. 17.
    Allen, S. E., Chemical Analysis of Ecological Material, 2nd, ed., Oxford: Blackwell Science Publishers, 1989, 331–332.Google Scholar
  18. 18.
    Brown, S. L., Chaney, R. L., Angle, J. S. et al., Phytoremediatation potential ofThlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil, Journal of Environmental Quality, 1994, 23: 1151–1157.CrossRefGoogle Scholar
  19. 19.
    Baker, A. J. M., Reeves, R. D., Hajar, A. S. M., Heavy metal accumulation and tolerance in British populations of the metallophyteThlaspi caerulescens J. & C. Presl (Brassicaceae), New Phytologist, 1994, 127: 61–68.CrossRefGoogle Scholar
  20. 20.
    Lombi, E., Zhao, F. J., Dunham, S. J. et al., Cadmium accumulation in populations ofThlaspi caerulescens andThlaspi goesingense, New Phytologist, 2000, 145: 11–20.CrossRefGoogle Scholar
  21. 21.
    Brown, S. L., Chaney, R. L., Angel, J. S. et al., Zinc and cadmium uptake by hyperaccumulatorThlaspi caerulescens grown in nutrient solution, Soil Science Society of America Journal, 1995, 59: 125–133.Google Scholar
  22. 22.
    Lombi, E., Zhao, F. J., Dunham, S. J. et al., Caduium accumulation in populations ofThlaspi caerulescens andThlaspi goesingense, New Phytologist, 2000, 145: 11–20.CrossRefGoogle Scholar
  23. 23.
    Zhao, F. J., Hamon, R. E., Lombi, E. et al., Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulatorThlaspi caerulescens, Journal of Experimental Botany, 2002, 53: 535–543.CrossRefGoogle Scholar
  24. 24.
    Lombi, E., Zhao, F. J., McGrath, S. P. et al., Physiological evidence for a high-affinity cadmium transporter highly expressed in aThlaspi caerulescens ecotype, New Phytologist, 2001, 149: 53–60.CrossRefGoogle Scholar
  25. 25.
    Wenzel, W. W., Jockwer, F., Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps, Environmental Pollution, 1999, 104: 145–155.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.School of Life Sciences, and State Key Laboratory for Bio-ControlSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations