Analysis in Theory and Applications

, Volume 20, Issue 2, pp 149–157 | Cite as

“Mandelbrot set” for a pair of linear maps: The local geometry



We consider the iterated function system {λz−1, λz+1} in the complex plane, for λ in the open unit disk. Let M be the set of λ such that the attractor of the IFS is connected. We discuss some topological and geometric properties of the set M and prove a new result about possible corners on its boundary. Some open problems and directions for further research are discussed as well.

Key words

Mandelbrot set iterated function system local geometry 

AMS(2000)subject classification

28A80 28A78 37F45 26C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bandt, C., On the Mandelbrot Set for Pairs of Linear Maps, Nonlinearity, 15 (2002), 1127–1147.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Beaucoup, F., Borwein, P., Boyd, D. W. and Pinner, C., Multiple Roots of [-1,1] Power Series, J. London Math. Soc., 57: 2 (1998), 135–147.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Barnsley, M. F., Fractals Everywhere, Academic Press, 1988.Google Scholar
  4. [4]
    Barnsley, M. F. and Harrington, A. N., A Mandelbrot Set for Pairs of Linear Maps, Phisica, 15D (1985), 421–432.MathSciNetGoogle Scholar
  5. [5]
    Bousch, T., Connexit é Locale et Par Chemins Hölderiens Pour Les Syst è mes Itërës de Fonctions Preprint, 1993.Google Scholar
  6. [6]
    indlekofer, K. H., Járai, A. and Kátai, I., On Some Properties of Attractors Generated by Iterated Function SYstems, Acta Sci. Math. (Szeged), 60 (1995), 411–427.MATHMathSciNetGoogle Scholar
  7. [7]
    Indlekofer, K. H., Kátai, I. and Racsko, P., Some Remarks on Generalized Number Systems, Acta Sci. Math. (Szeged), 57 (1993), 543–553.MATHMathSciNetGoogle Scholar
  8. [8]
    Morán, M., Chaotic Control, Itertion Theory (Bastschuns, 1992), 207–219, World Sci. Publishing, 1996.Google Scholar
  9. [9]
    Odlyzko, A. M. and Poonen, B., Zeros of Polynomials with 0,1 Coefficients, L'Enseignement Math., 39 (1993), 317–348.MATHMathSciNetGoogle Scholar
  10. [10]
    Solomyak, B., Measur and Dimension of Some Fractal Families, Math. Proc. Cambridge Phil. Soc., 124: 3 (1998), 531–546.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Solomyak, B. and Xu, H., On the “Mandelbrot Set” for a Pair of Linear Maps and Complex Bernoulli Convolutions, Preprint, 2002.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations