Wuhan University Journal of Natural Sciences

, Volume 1, Issue 3–4, pp 593–598 | Cite as

Multiple structure computational model and its application in optimization

  • Jun He
  • Li-shan Kang
  • Yong-jun Chen
Part II. Invited Lectures and Contributed Lectures 5. Evolutionary Computations and Neural Networks


The paper proposes an evolutionary computational model, multiple structure computational model, from simulating the behavior of the ecosystem. Some numerical experiments show the new model can solve some GA-hard problems. Using the concept of adaptability in ecology, we give a theoretical analysis to explain why the new model is efficient.


genetic algorithms evolution multiple structure adaptability ecosystem 

C.R. Categories

F.2.2 G.2.1 G.1.1. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Conrad,Adaptability. Plenum Press, New York, 1983.Google Scholar
  2. [2]
    D.E. Goldberg,Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA, 1989.MATHGoogle Scholar
  3. [3]
    Jun He,Evolutionary computation from ecosystem. Ph. D. Thesis, Department of Computer Science, Wuhan University, Wuhan (in Chinese), 1995.Google Scholar
  4. [4]
    J. H. Holland,Adaptation in natural and artificial system. 2nd ed. the MIT press. Cambridge, MA. 1992.Google Scholar
  5. [5]
    H. Mühlenbein, M. Schomisch and J. Born, Parallel genetic algorithms as function optimizer,Parallel Computing,17 (1991), 269–279.CrossRefGoogle Scholar
  6. [6]
    M. D. Vose, Generalizing the notion of schema in genetic algorithms,Artificial Intelligence,50 (1991), 385–396.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • Jun He
    • 1
  • Li-shan Kang
    • 1
  • Yong-jun Chen
    • 2
  1. 1.Software Engineering State Key LaboratoryWuhan UniversityWuhan
  2. 2.Guangdong Commercial CollegeGuangzhou 510320P. R. China

Personalised recommendations