Metallurgical and Materials Transactions B

, Volume 1, Issue 5, pp 1281–1285 | Cite as

The portevin-le chatelier effect in carburized nickel alloys

  • J. S. Blakemore
Mechanical Behaviour


From a study of serrated yielding (the Portevin-Le Chatelier Effect) in carburized nickel, it is shown that the expected diffusion coefficient does not fit the approximate Cottrell condition relating strain rate (ġe), mobile dislocation density (p), and diffusion coefficient(D). Since serrations begin immediately after yielding, vacancy-enhanced diffusion caused by plastic strain is not responsible for this. Generally, it is proposed that carbide stability controls the temperature at which serrated yielding disappears while carbon diffusion may play a part in the complex process responsible for the appearance of serrated yielding. Cobalt additions to carburized nickel quickly attenuate the effect while copper additions at first accentuate the effect and then remove it. The driving force for carbon to the dislocations responsible for the mobile solute-mobile dislocation interactions is most probably due to the elastic misfit of the carbon atom in solution.


Nickel Alloy Stack Fault Energy Serrate Yielding Copper Addition Lower Critical Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Ye. Popov and V. F. Sukhovarov:Phys. Met. Metallog. (USSR), English transl., 1964, vol. 17, pp. 100–05.Google Scholar
  2. 2.
    J. S. Blakemore:Met. Trans., 1970, vol. 1, pp. 145–50.Google Scholar
  3. 3.
    D. E. Sonon and G. V. Smith:Trans. TMS-AIME, 1968, vol. 242, pp. 1527–33.Google Scholar
  4. 4.
    J. S. Blakemore, W. A. Oates, and E. O. Hall:Trans. TMS-AIME, 1968, vol.242, pp. 332–33.Google Scholar
  5. 5.
    J. S. Blakemore and E. O. Hall:Trans. TMS-AIME, 1968, vol. 242, pp. 333–35.Google Scholar
  6. 6.
    A. J. Heckler and P. G. Winchell:Trans. TMS-AIME, 1963, vol. 227, pp. 732–36.Google Scholar
  7. 7.
    M. A. Adams:J. Sci. Instr., 1959, vol. 36, pp. 444–46.CrossRefGoogle Scholar
  8. 8.
    A. H. Cottrell:Dislocations and Plastic Flow in Crystals, p. 141, Clarendon Press, Oxford, 1953.Google Scholar
  9. 9.
    S. Diamond and C. Wert:Trans. TMS-AIME, 1967, vol. 239, pp. 705–09.Google Scholar
  10. 10.
    V. F. Sukhovarov:Phys. Met. Metallog. (USSR), English transl., 1962, vol. 13, pp. 104–13.Google Scholar
  11. ll.
    C.S. Barrett and T. B. Massalski:Structure of Metals, p. 235, McGraw-Hill Book Co., New York, 1966.Google Scholar
  12. 12.
    A. H. Cottrell and B. A. Bilby:Proc. Phys. Soc. (London), 1949, vol. A62, pp.49–62.CrossRefGoogle Scholar
  13. 13.
    M. Hansen and K. Anderko:Constitution of Binary Alloys, McGraw-Hill Book Co., New York, 1958.Google Scholar
  14. 14.
    R. P. Elliott: First supplement toConstitution of Binary Alloys, McGraw-Hill Book Co., New York, 1965.Google Scholar
  15. 15.
    N. F. Fiore and C. L. Bauer:Progr. Mater. Sci., 1967, vol. 13, pp. 87–134.Google Scholar
  16. 16.
    B. E. P. Beeston, I. L. Dillamore, and R. E. Smallman:Metal Sci. J., 1968, vol.2, pp. 12–14.CrossRefGoogle Scholar
  17. 17.
    T. Ericcson:Acta Met., 1966, vol. 14, pp. 853–65.CrossRefGoogle Scholar
  18. 18.
    L. C. Browning and P. H. Emmett:J. Am. Chem. Soc, 1952, vol. 74, pp. 1680–82.CrossRefGoogle Scholar
  19. 19.
    I. R. Harriss, I. L. Dillamore, R. E. Smallman, and B. E. P. Beeston:Phil. Mag., 1966, vol. 14, pp. 325–33.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970

Authors and Affiliations

  • J. S. Blakemore
    • 1
  1. 1.Australian Atomic Energy Commission, Research EstablishmentLucas Heights

Personalised recommendations