Advertisement

Virchows Archiv B

, 60:7 | Cite as

Immunohistochemical characterization, distribution and ultrastructure of lymphocytes bearing the gamma/delta T-cell receptor in the human gut

  • Kouhei Fukushima
  • Takayuki Masuda
  • Haruo Ohtani
  • Iwao Sasaki
  • Yuji Funayama
  • Seiki Matsuno
  • Hiroshi Nagura
Article

Summary

The phenotypic characterization and distribution of lymphocytes bearing the gamma/delta T-cell receptor (TCR) in the human gut were investigated by an immunohistochemical technique. A mirror section technique and double staining method were used for the phenotypic analysis. Intraepithelial delta-positive cells were almost all CD8-positive and rarely negative for both CD4 and CD8. On the other hand, lymphocytes bearing TCR gamma/delta in the lamina propria were largely negative for both CD4 and CD8. The ratio of delta-positive to CD3-positive cells amongst intraepithelial lymphocytes was larger in the lower intestine. Deltapositive cells were also observed in paracortical areas of lymphoid follicles. Immunoelectron microscopic observation revealed granular structures in these delta-positive cells, which are also present in large granular lymphocytes. The role of lymphocytes bearing TCR gamma/ delta in mucosal immune responses in the human gut are discussed.

Key words

T-cell receptor δ chain Immunohistochemistry Intestine 

References

  1. Abo T, Balch CM (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 127:1024–1029PubMedGoogle Scholar
  2. Abo T, Cooper MD, Balch CM (1982) Characterization of HNK-l+(Leu-7) human lymphocytes 1. Two distinct phenotypes of human NK cells with different cytotoxic capability. J Immunol 129:1752–1757PubMedGoogle Scholar
  3. Asarnow DM, Goodman T, Lefrancois L, Allison JP (1989) Distinct antigen receptor repertoires of two classes of murine epithelium-associated T cells. Nature 341:60–62PubMedCrossRefGoogle Scholar
  4. Band H, Hochstenbach F, McLean J, Hata S, Krangel S, Brenner MB (1987) Immunochemical proof that a novel rearranging gene encodes the T cell receptor δ subunit. Science 238:682–684PubMedCrossRefGoogle Scholar
  5. Banderia A, Mota-Santos T, Itohara S, Degermann S, Heusser C, Tonegawa S, Coutinho A (1990) Localization of γ/δ T cells to the intestinal epithelium is independant of normal microbial colonization. J Exp Med 172:239–244CrossRefGoogle Scholar
  6. Bank I, Depinho RA, Brenner MB, Cassimeris J, Alt FW, Chess L (1986) A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature 322:179–181PubMedCrossRefGoogle Scholar
  7. Bonneville M, Janeway JR CA, Ito K, Haser W, Ishida I, Nakan-ishi N, Tonegawa S (1988) Intestinal intraepithelial lymphocytes are a distinct set of γδ T cells. Nature 336:479–481PubMedCrossRefGoogle Scholar
  8. Borst J, van de Griend RJ, van Oostveen JW, Ang S, Melief CJ, Scidman JG, Bolhuis RLH (1987) A T-cell receptor γ/CD3 complex found on cloned functional lymphocytes. Nature 325:683–688PubMedCrossRefGoogle Scholar
  9. Borst J, van Dongen JJM, Bolhuis RLH, Peters PJ, Hafler DA, de Vries E, van de Griend RJ (1988) Distinct molecular forms of human T cell receptor γ/δ detected on viable T cells by a monoclonal antibody. J Exp Med 167:1625–1644PubMedCrossRefGoogle Scholar
  10. Brenner MB, Mclean J, Dialynas DP, Strominger JL, Smith JA, Owen FL, Scidman JG, Ip S, Rosen F, Krangel MS (1986) Identification of a putative second T-cell receptor. Nature 322:145–149PubMedCrossRefGoogle Scholar
  11. Brenner MB, Mclean J, Scheft H, Riberdy J, Ang S, Scidman JG, Devlin P, Krangel MS (1987) Two forms of the T-cell receptor γ protein found on peripheral blood cytotoxic T lymphocytes. Nature 325:689–694PubMedCrossRefGoogle Scholar
  12. Bucy RP, Chen CH, Cooper MD (1989) Tissue localization and CD8 accessory molecule expression of γδ T cells in humans. J Immunol 142:3045–3049PubMedGoogle Scholar
  13. Cron RQ, Konung F, Maloy WL, Pardoll D, Coligan JE (1988) Peripheral murine CD3+, CD4, CD8 T lymphocyte express novel T cell receptorγδ structures. J Immunol 141:1074–1082PubMedGoogle Scholar
  14. Denning SM, Kurtzberg J, Leslie DS, Haynes BF (1989) Human postnatal CD4-CD8-CD3-thymic T cell precursors differentiate in vitro into T cell receptor δ-bearing cells. J Immunol 142:2988–2997PubMedGoogle Scholar
  15. Ferrarini M, Romagnani S, Montesoro E, Zicca A, Prete GFD, Nocera A, Maggi E, Leprini A, Grossi CE (1983) A lymphoproliferative disorder of the large granular lymphocytes with natural killer activity. J Clin Immunol 3:30–41PubMedCrossRefGoogle Scholar
  16. Goodman T, Lefrancois L (1988) Expression of the γ-δ T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. Nature 333:855–858PubMedCrossRefGoogle Scholar
  17. Groh V, Porcelli S, Fabbi M, Lanier LL, Picker LJ, Anderson T, Warnke RA, Bhan AK, Strominger JL, Brenner MB (1989) Human lymphocytes bearing T cell receptor γ/δ are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med 169:1277–1294PubMedCrossRefGoogle Scholar
  18. Grossi CE, Leprini ZA, Cadoni A, Pandolfi F, Burgio VL, Romag-nani S, Guglielmi C, Ferrarini M (1984) Granule formation in large granular lymphocytes (LGL). Ultrastructural and cytochemical studies on cells from patients with abnormally expanded LGL populations. J Submicrosc Cytol 16:759–771PubMedGoogle Scholar
  19. Guy-Grand D, Griscelli C, Vassalli P (1974) The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur J Immunol 4:435–443PubMedCrossRefGoogle Scholar
  20. Grimm E, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon. I. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1829PubMedCrossRefGoogle Scholar
  21. Hedrick SM, Germain RN, Bevan MJ, Dorf M, Engel I, Fink P, Gascoigne N, Heber-Katz E, Kapp J, Kaufmann Y, Kaye J, Melchers F, Pierce C, Schartz RH, Sorensen C, Taniguchi M, Davis MM (1985) Rearrangement and transcription of a T-cell receptor β-chain gene in different T-cell subsets. Proc Natl Acad Sci USA 82:531–535PubMedCrossRefGoogle Scholar
  22. Huntley JF, Mcgouram B, Newlands GFJ, Miller HRP (1984) Granulated intraepithelial lymphocytes: their relationship to mucosal mast cells and globule leucocytes in the rat. Immunology 53:525–535PubMedGoogle Scholar
  23. Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D (1990) Subsets of CD3+ (T cell receptor α/β or γ/δ) and CD3y- lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterpartsin peripheral blood. Eur J Immunol 20:1097–1103PubMedCrossRefGoogle Scholar
  24. Koning F, Stingl G, Yokoyama WM, Yamada H, Maloy WL, Tschachler E, Shevach EM, Coligan JE (1987) Identification of a T3-associated T cell receptor on Thy-1+ dendritic epidermal cell lines. Science 236:834–837PubMedCrossRefGoogle Scholar
  25. Kronenberg M, Goverman J, Haars R, Malissen M, Kraig E, Phil-lips L, Derovitch T, Suciu-Foca N, Hood L (1985) Rearrangement and transcription of the β-chain genes of the T-cell antigen receptor in different types of murine lymphocytes. Nature 313:647–653PubMedCrossRefGoogle Scholar
  26. Kyes S, Carew E, Carding SR, Janeway Jr CA, Hayday A (1989) Diversity in T-cell receptor γ gene usage in intestinal epithelium. Proc Natl Acad Sci USA 86:5527–5531PubMedCrossRefGoogle Scholar
  27. Lefrancois L, Goodman T (1989) In vitro modulation of cytolytic activity and Thy-1 expression in TCR-γδ+ intraepithelial lymphocytes. Science 243:1716–1718PubMedCrossRefGoogle Scholar
  28. Lew AM, Pardoll DM, Maloy WL, Fowlkes BJ, Kruisbeek A, Cheng S, Germain RN, Bluestone JA, Schwartz RH, Coligan JE (1986) Characterization of T cell receptor gamma chain expression in a subset of murine thymocytes. Science 234:1401–1405PubMedCrossRefGoogle Scholar
  29. MacLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083Google Scholar
  30. Moingeon P, Ythier A, Goubin G, Faure F, Nowill A, Delmon L, Rainaud M, Forestier F, Daffos F, Bohuon C, Hercend T (1986) A unique T-cell receptor complex expressed on human fetal lymphocytes displaying natural-killer-like activity. Nature 323:638–640PubMedCrossRefGoogle Scholar
  31. Nagura H, Koshikawa T, Fukuda Y, Asai J (1986) Hepatic vascular endothelial cells heterogeneously express surface antigens associated with monocytes, macrophages and T lymphocytes. Virchows Arch [A] 409:407–416CrossRefGoogle Scholar
  32. Nakane PK (1968) Simultaneous localization of multiple antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem 16:557–560PubMedGoogle Scholar
  33. Ohtani H, Naganuma H, Nagura H (1991) Microwave fixation for histocytochemistry: Application to surgical pathology and preembedding immunoelectron microscopy. Acta Histochem Cytochem (in press)Google Scholar
  34. Osamura Y, Komatsu N, Nakanishi E (1980) Light and electron microscopical combined staining by immunohistochemical and enzyme histochemical methods using rat prolactin-secreting tumours. Histochem J 12:371–379PubMedCrossRefGoogle Scholar
  35. Saito H, Kranz DM, Takagaki Y, Hayday AC, Eisen HN, Tonegawa S (1984) Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature 309:757–762PubMedCrossRefGoogle Scholar
  36. Trejdosiewicz LK, Smart CJ, Oakes DJ, Howdle PD, Malizia G, Campana D, Boylston AW (1989) Expression of T-cell receptors TCR1 (gamma-delta) and TCR2 (alpha/betta) in the human intestinal mucosa. Immunology 68:7–12PubMedGoogle Scholar
  37. Ullrich R, Schieferdecker HL, Ziegler K, Riecken EO, Zeitz M (1990)γδ T cells in the human intestine express surface markers of activation and are preferentially located in the epithelium. Cell Immunol 128:619–627PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Kouhei Fukushima
    • 1
    • 2
  • Takayuki Masuda
    • 1
  • Haruo Ohtani
    • 1
  • Iwao Sasaki
    • 2
  • Yuji Funayama
    • 2
  • Seiki Matsuno
    • 2
  • Hiroshi Nagura
    • 1
  1. 1.Department of PathologyTohoku University School of Medicine 2-1 SciryomachiSendaiJapan
  2. 2.First Department of SurgeryTohoku University School of Medicine 2-1 SciryomachiSendaiJapan

Personalised recommendations