Il Nuovo Cimento B (1971-1996)

, Volume 107, Issue 8, pp 941–960 | Cite as

Toward a field theory of gravitation

  • H. Yilmaz


A new theory of gravitation is presented in which the righ-hand side of the field equations contains the gravitational-field stress-energy tensort μ ν . The crucial new information leading to this construction is the demonstration that the two basic differential identities of space-time geometry (that of Bianchi and that of Freud) require atrue gravitational field stress-energy tensort μ ν which must be added to the matter tensor τ μ ν . Otherwise, the two identities clash and lead to a mathematical overdetermination which creates insurmountable internal difficulties for the curved-space-time theory of gravitation as a whole.


PACS 04.20.Cv Fundamental problems and general formalism PACS 04.60 Quantum theory of gravitation PACS 95.10.Ce Celestial mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Schrödinger:Phys. Z.,19, 4 (1918).zbMATHGoogle Scholar
  2. [2]
    H. Bauer:Phys. Z.,19, 163 (1918).zbMATHGoogle Scholar
  3. [3]
    H. Yilmaz:Proceedings of the International Symposium on Spacetime Symmetries (Wigner Symposium), edited byY. S. Kim andW. W. Zachary (North-Holland, Amsterdam, 1989).Google Scholar
  4. [4]
    A. Einstein:Ann. Phys. (Leipzig),49, (1916). See eqs. (56) and (57).Google Scholar
  5. [5]
    A. Einstein:Phys. Z,19, 115 (1918).zbMATHGoogle Scholar
  6. [6]
    H. Yilmaz:Ann. Phys. N.Y. Acad. Sci.,480, 625 (1986);Int. J. Theor. Phys.,21, 871 (1982);Phys. Lett. A,92, 377 (1982).ADSCrossRefGoogle Scholar
  7. [7]
    H. Yilmaz:Phys. Rev.,111, 1417 (1958);Ann. Phys. (N.Y.),104, 414 (1976).MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Hilbert:Gött. Nachr.,3, 394 (1915);P. A. M. Dirac.:General Theory of Relativity (J. Wiley, New York, N.Y., 1975).Google Scholar
  9. [9]
    P. Freud:Ann. Math.,40, 417 (1939).MathSciNetCrossRefGoogle Scholar
  10. [10]
    W. Pauli:Theory of Relativity (Dover Publications Co., New York, N.Y., 1958), p. 70, 216.zbMATHGoogle Scholar
  11. [11]
    M. Carmeli, E. Leibowitz andN. Nissani:Gravitation (World Scientific, Singapore, 1990), p. 49–62.zbMATHGoogle Scholar
  12. [12]
    L. D. Landau andE. M. Lifshitz:Classical Theory of Fields (Pergamon Press, London, 1975), 4 ed., pp. 280.Google Scholar
  13. [13]
    H. Yilmaz:Nuovo Cimento Lett.,7 337 (1973); see also ref. [6] above.CrossRefGoogle Scholar
  14. [14]
    B. O. J. Tupper:Nuovo Cimento B,19, 135 (1974);Nuovo Cimento Lett.,14, 627 (1974).MathSciNetADSGoogle Scholar
  15. [15]
    H. P. Robertson andT. W. Noonan:Relativity and Cosmology (W. B. Saunders, Philadelphia, Penn., 1968), p. 239.zbMATHGoogle Scholar
  16. [16]
    B. De Wit andJ. Smith:Field Theory in Particle Physics, Vol. 1 (North-Holland, 1986), p. 295.Google Scholar

Copyright information

© Società Italiana di Fisica 1992

Authors and Affiliations

  • H. Yilmaz
    • 1
    • 2
  1. 1.Hamamatsu Photonics, K. K.Hamamatsu CityJapan
  2. 2.Electro-Optics Technology CenterTufts UniversityMedfordUSA

Personalised recommendations